13
Views
44
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Rapid, Stabilizing Palindrome Rearrangements in Somatic Cells by the Center-Break Mechanism

, , &
Pages 8740-8750 | Received 01 Jul 2003, Accepted 28 Aug 2003, Published online: 27 Mar 2023
 

Abstract

DNA palindromes are associated with rearrangement in a variety of organisms. A unique opportunity to examine the impact of a long palindrome in mammals is afforded by the Line 78 strain of mice. Previously it was found that the transgene in Line 78 is likely to be palindromic and that the symmetry of the transgene was responsible for a high level of germ line instability. Here we prove that Line 78 mice harbor a true 15.4-kb palindrome, and through the establishment of cell lines from Line 78 mice we have shown that the palindrome rearranges at the impressive rate of about 0.5% per population doubling. The rearrangements observed to arise from rapid palindrome modification are consistent with a center-break mechanism where double-strand breaks, created through hairpin nicking of an extruded cruciform, are imprecisely rejoined, thus introducing deletions at the palindrome center. Significantly, palindrome rearrangements in somatic tissue culture cells almost completely mirrored the structures generated in vivo in the mouse germ line. The close correspondence between germ line and somatic events indicates the possibility that center-break modification of palindromes is an important mechanism for preventing mutation in both contexts. Permanent cell lines carrying a verified palindrome provide an essential tool for future mechanistic analyses into the consequences of palindromy in the mammalian genome.

ACKNOWLEDGMENTS

This study was supported by a grant from the Canadian Institutes of Health Research to S.M.L.

We gratefully acknowledge David F. Andrews, Barbara Thomson, and Homayoun M. Baybourdy of the Statistics Department, University of Toronto, for assistance in the rate analyses. We also thank Yuan Xiao Zhu for technical contributions and Howard Lipshitz and Maria Jasin for comments on the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.