31
Views
42
CrossRef citations to date
0
Altmetric
Gene Expression

SMU-2 and SMU-1, Caenorhabditis elegans Homologs of Mammalian Spliceosome-Associated Proteins RED and fSAP57, Work Together To Affect Splice Site Choice

, &
Pages 6811-6823 | Received 16 Oct 2003, Accepted 20 Apr 2004, Published online: 27 Mar 2023
 

Abstract

Mutations in the Caenorhabditis elegans gene smu-2 suppress mec-8 and unc-52 mutations. It has been proposed that MEC-8 regulates the alternative splicing of unc-52 transcripts, which encode the core protein of perlecan, a basement membrane proteoglycan. We show that mutation in smu-2 leads to enhanced accumulation of transcripts that skip exon 17, but not exon 18, of unc-52, which explains our finding that smu-2 mutations suppress the uncoordination conferred by nonsense mutations in exon 17, but not in exon 18, of unc-52. We conclude that smu-2 encodes a ubiquitously expressed nuclear protein that is 40% identical to the human RED protein, a component of purified spliceosomes. The effects of smu-2 mutation on both unc-52 pre-mRNA splicing and the suppression of mec-8 and unc-52 mutant phenotypes are indistinguishable from the effects of mutation in smu-1, a gene that encodes a protein that is 62% identical to human spliceosome-associated protein fSAP57. We provide evidence that SMU-2 protects SMU-1 from degradation in vivo. In vitro and in vivo coimmunoprecipitation experiments indicate that SMU-2 and SMU-1 bind to each other. We propose that SMU-2 and SMU-1 function together to regulate splice site choice in the pre-mRNAs of unc-52 and other genes.

We thank Heather Gardner and Dave Zarkower for tim-1 and tra-1 constructs, Y. Kohara for cDNA clones, and Todd Starich and John Yochem for much good advice. We give an especially big thanks to Caroline Spike for many useful discussions and technical guidance. Some nematode strains were provided by the Caenorhabditis Genetics Center.

This work was supported by U.S. National Institutes of Health (NIH) research grants GM22387 (R.K.H.) and GM56367 (J.E.S.). A.K.S. was a recipient of a doctoral dissertation fellowship from the University of Minnesota and a fellowship from NIH training grant HD07480.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.