2
Views
2
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of DNA Elements Cooperatively Activating Proopiomelanocortin Gene Expression in the Pituitary Glands of Transgenic Mice

, , , &
Pages 3978-3990 | Received 10 Mar 1992, Accepted 11 Jun 1992, Published online: 01 Apr 2023
 

Abstract

The proopiomelanocortin (POMC) gene is highly expressed in adult mouse pituitary anterior lobe corticotrophs and intermediate lobe melanotrophs. To identify the DNA elements important for this tissue-specific expression, we analyzed a series of POMC reporter genes in transgenic mice. A DNA fragment containing rat POMC 5′-flanking sequences from −323 to −34 recapitulated both basal pituitary cell-specific and hormonally stimulated expression in adult mice when fused to a heterologous thymidine kinase promoter. Developmental onset of the reporter gene expression lagged by 1 day but otherwise closely paralleled the normal ontogeny of murine POMC gene expression, including corticotroph activation at embiyonic day 14.5 (E14.5) followed by melanotroph activation at E15.5 to E16.5. AtT20 corticotroph nuclear protein extracts interacted with three specific regions of the functional POMC promoter in DNase I protection assays. The positions of these protected sites were −107 to −160 (site 1), −182 to −218 (site 2), and −249 to −281 (site 3). Individual deletions of these footprinted sites did not alter transgene expression; however, the simultaneous deletion of sites 2 and 3 prevented transgene expression in both corticotrophs and melanotrophs. Electrophoretic mobility shift and Southwestern (DNA-protein) assays demonstrated that multiple AtT20 nuclear proteins bound to these footprinted sites. We conclude that the sequences between −323 and −34 of the rat POMC gene promoter are both necessary and sufficient for correct spatial, temporal, and hormonally regulated expression in the pituitary gland. Our data suggest that the three footprinted sites within the promoter are functionally interchangeable and act in combination with promoter elements between −114 and −34. The inability of any reporter gene construction to dissociate basal and hormonally stimulated expression suggests that these DNA elements are involved in both of these two characteristics of POMC gene expression in vivo. * †

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.