22
Views
5
CrossRef citations to date
0
Altmetric
Technical Paper

Effectiveness of Tritium Removal from a CTR Lithium Blanket by Cold Trapping Secondary Liquid Metals Na, K, and NaK

&
Pages 138-150 | Published online: 13 May 2017
 

Abstract

Thermodynamic calculations were made on the distribution of hydrogen and tritium between various refractory metals and liquid lithium as a function of temperature. The limiting tritium pressures that can be attained by cold trapping secondary liquid metals such as sodium, potassium, and sodium—78 wt% potassium (NaK) were also calculated. In the absence of tritium breeding, these pressures are 2.5 × 10−5, 2 × 10−7, and 1.2 × 10−10 Torr for sodium, potassium, and NaK, respectively, which correspond to tritium concentrations in lithium of 45, 4, and < 1 ppm, respectively, at 700°C. For a 1000-MW(th) thermonuclear reactor with a tritium breeding rate of 150 g/day, a tritium recovery system that incorporates (a) a separate lithium purification loop with niobium as the permeable membrane, (b) NaK as the secondary heat transport fluid, and (c) tungsten cladding on the IHX tubes will yield a tritium pressure of 10−9 Torr or less in the secondary system. This configuration will result in a tritium release rate ∼10−6 g/h to the steam system for a tungsten-clad steam generator operating at ∼600°C. The corresponding activity release rate is ∼300 Ci/yr.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.