22
Views
5
CrossRef citations to date
0
Altmetric
Technical Paper

Effectiveness of Tritium Removal from a CTR Lithium Blanket by Cold Trapping Secondary Liquid Metals Na, K, and NaK

&
Pages 138-150 | Published online: 13 May 2017

REFERENCES

  • A. P. FRAAS, “A Diffusion Process for Removing Tritium from the Blanket of a Thermonuclear Reactor,” ORNL-TM-2358, Oak Ridge National Laboratory (1968).
  • R. FAROOKHI and J. E. ROGERS, “Methods of Tritium Recovery from Molten Lithium,” ORNL-MIT-66, Oak Ridge National Laboratory (1968).
  • E. F. JOHNSON, “Overall Tritium Balances in Thermonuclear Power Reactors,” Proc. BNES Conf. Nuclear Fusion Reactors, British Nuclear Energy Society (1969).
  • A. P. FRAAS, “Conceptual Design of the Blanket and Shield Region and Related Systems for a Full Scale Toroidal Fusion Reactor,” ORNL-TM-3096, Oak Ridge National Laboratory (1973).
  • F. RIBE et al., “An Engineering Design Study of a Reference Theta-Pinch Reactor,” LA-5336/ANL-8019, Los Alamos Laboratory and Argonne National Laboratory ( in press).
  • A. P. FRAAS, “Comparison of Two Tritium Removal Systems Designed to Minimize Contamination of Steam Systems in Full-Scale Thermonuclear Power Plants,” ORNL-TM-2932, Oak Ridge National Laboratory (1970).
  • V. A. MARONI, “Some Estimates of Tritium Permeation Rates in the Core of a D-T-Fueled Fusion Reactor,” ANL-7948, Argonne National Laboratory (1972).
  • J. E. DRALEY and S. GREENBERG, “Some Features of the Impact of a Fusion Reactor Power Plant on the Environment,” Proc. Symp. Technology of Controlled Thermonuclear Fusion Experiments and the Engineering Aspects of Fusion Reactors, Austin, Texas (November 1972).
  • D. L. SMITH and K. NATESAN, “Influence of Non-metallic Impurity Elements on the Compatibility of Liquid Lithium with Potential CTR Containment Materials,” to be published in May 1974 Nucl. Technol.
  • A. D. McQUILLAN, “An Experimental and Thermodynamic Investigation of the Hydrogen-Titanium System,” Proc. Roy. Soc. (London), 204A, 309 (1950).
  • C. M. SCHWARTZ and M. W. MALLETT, “Observations on the Behavior of Hydrogen in Zirconium,” Trans. Am. Soc. Metals, 46, 640 (1954).
  • E. A. GULBRANSEN and K. F. ANDREW, “Solubility and Decomposition Pressures of Hydrogen in Alpha-Zirconium,” J. Metals, 7, 136 (1955).
  • C. E. ELLS and A. D. McQUILLAN, “A Study of the Hydrogen-Pressure Relationships in the Zirconium-Hydrogen System,” J. Inst. Metals, 85, 89 (1956-57).
  • M. W. MALLETT and W. M. ALBRECHT, “Low-Pressure Solubility and Diffusion of Hydrogen in Zirconium,” J. Electrochem. Soc., 104, 142 (1957).
  • L. D. LaGRANGE, L. J. DYKSTRA, J. M. DIXON, and U. MERTEN, “A Study of the Zirconium-Hydrogen and Zirconium-Hydrogen-Uranium Systems between 600 and 800°C,” J. Phys. Chem., 63, 2035 (1959).
  • G. OSTBERG, “Determination of Hydride Solubility in Alpha Phase Zirconium, Zircaloy-2 and Zircaloy-4,” J. Nucl. Mater., 5, 208 (1962).
  • D. HARDIE, “The Effect of Oxygen on the Precipitation of Hydrogen from Zirconium,” J. Nucl. Mater., 17, 88 (1965).
  • W. H. ERICKSON, “Hydrogen Solubility in Zirconium Alloys,” Electrochem. Tech., 4, 205 (1966).
  • P. KOFSTAD and W. E. WALLACE, “Vapor Pressure Studies of the Vanadium-Hydrogen System and Thermodynamics of Formation of Vanadium-Hydrogen Solid Solutions,” J. Am. Chem. Soc., 81, 5019 (1959).
  • E. VELECKIS and R. K. EDWARDS, “Thermodynamic Properties in the Systems Vanadium-Hydrogen, Niobium-Hydrogen, and Tantaium-Hydrogen,” J. Phys. Chem., 73, 683 (1969).
  • W. M. ALBRECHT, M. W. MALLETT, and W. D. GOODE, “Equilibria in the Niobium-Hydrogen System,” J. Electrochem. Soc., 105, 219 (1958).
  • S. KOMJATHY, “The Niobium-Hydrogen System,” J. Less-Common Metals, 2, 466 (1960).
  • O. M. KATZ and E. A. GULBRANSEN, “Thermodynamic Functions for the Columbium-Hydrogen System,” Columbium Metallurgy, D. L. DOUGLASS and F. W. KUNZ, Eds., p. 523, Interscience Publishers, New York (1961).
  • E. FROMM and H. JEHN, “Reactions of Niobium and Tantalum with Gases at High Temperatures and Low Pressures,” Vacuum, 19, 191 (1969).
  • E. MARTIN, “Ein Beitrag Zur Frage der Aufnahmerfahigkeit des reinem Eisens und einiger seiner Legierungselemente für Wasserstoff und Stickstoff,” Arch. Eisenhuttenw., 3, 407 (1929).
  • L. LUCKEMEYER-HASSE and H. SCHENCK, “Loslichkeit von Wasserstoff in einigen Metallen und Legierungen,” Arch. Eisenhuttenw., 6, 209 (1932).
  • A. SIEVERTS and K. BRUENING, “The Capacity for Absorbing Hydrogen and Nitrogen of Iron-Molybdenum Alloys,” Arch. Eisenhuttenw., 7, 641 (1934).
  • M. L. HILL, “Solubility and Diffusivity of Hydrogen in Molybdenum,” J. Metals, 12, 725 (1960).
  • L. A. CHARLOT, A. B. JOHNSON, Jr., and R. E. WESTERMAN, “Solubilities and Diffusivities of Hydrogen Isotopes in Niobium, Niobium-Zirconium Alloys, and Vanadium at High Temperatures,” BNWL-SA-4473, Pacific Northwest Laboratory, Battelle Memorial Institute (1972).
  • E. VELECKIS and E. VanDEVENTER, in “Physical Inorganic Chemistry Semiannual Report, July-December 1972,” ANL-7978, Argonne National Laboratory (1972).
  • E. J. CAIRNS, F. A. CAFASSO, and V. A. MARONI, “A Review of the Chemical, Physical, and Thermal Properties of Lithium that Are Related to Its Use in Fusion Reactors,” The Chemistry of Fusion Technology, D. M. GRUEN, Ed., p. 109, Plenum Press, New York (1972).
  • D. R. VISSERS, J. T. HOLMES, L. G. BARTHOLME, and P. A. NELSON, “A Hydrogen-Activity Meter for Liquid Sodium and Its Application to Hydrogen-Solubility Measurements,” Nucl. Technol., 21, 235 (1974).
  • H. W. SAVAGE, E. L. COMPERE, B. FLEISCHER, W. R. HUNTLEY, R. E. MacPHERSON, and A. TABOADA, “SNAP-8 Corrosion Program, Summary Report,” ORNL-3898, Oak Ridge National Laboratory (1965).
  • G. T. HAHN, A. GILBERT, and R. I. JAFFEE, “The Effects of Solutes on the Ductile-to-Brittle Transition in Refractory Metals,” Refractory Metals and Alloys II, M. SEMCHYSHEN and I. PERLMUTTER, Eds., p. 23, Interscience Publishers, New York (1963).
  • W. D. WILKINSON, Properties of Refractory Metals, Gordon and Breach Science Publishers, New York (1969).
  • T. R. P. GIBB, Jr., “Hydrides and Metal-Hydrogen Systems,” NEPA-1841, Fairchild Engine and Airplane Corporation, NEPA Division (1951).
  • L. L. HILL, PhD Thesis, University of Chicago (1938).
  • C. B. HURD and G. A. MOORE, “The Thermal Dissociation of Lithium Hydride,” J. Am. Chem. Soc., 57, 332 (1935).
  • C. E. MESSER, “A Survey Report on Lithium Hydride,” NYO-9470, Tufts University Press (1960).
  • F. K. HEUMANN and O. N. SALMON, “The Lithium Hydride, Deuteride and Tritide Systems,” KAPL-1667, Knolls Atomic Power Laboratory (1956).
  • C. E. MESSER, E. B. DAMON, P. C. MAYBURY, J. MELLOR, and R. A. SEALES, “Solid-Liquid Equilibrium in the Lithium-Lithium Hydride System,” J. Phys. Chem., 62, 220 (1958).
  • S. A. MEACHAM, E. F. HILL, and A. A. GORDUS, “The Solubility of Hydrogen in Sodium,” APDA-241, Atomic Power Development Associates (1970).
  • C. C. ADDISON, R. J. PULHAM, and R. J. ROY, “The Thermal Dissociation of Sodium Hydride,” J. Chem. Soc. (London), 4895 (1964).
  • C. C. ADDISON, R. J. PULHAM, and R. J. ROY, “Solutions of Hydrogen in Liquid Sodium,” J. Chem. Soc. (London), 116 (1965).
  • R. J. NEWCOMBE and J. THOMPSON, “Electrochemical Method for the Determination of the Solubility of Hydrogen in Liquid Sodium,” J. Polarog. Soc., 14, 104 (1968).
  • D. W. McCLURE and G. D. HALSEY, “The Solubility of Hydrogen in Liquid Sodium,” J. Phys. Chem., 69, 3542 (1965).
  • A. HEROLD, “Tensions de Dissociation des Hydrures Alcalins,” Compt. Rend., 228, 686 (1949).
  • P. ROY and D. N. RODGERS, “Characterization of a Diffusion Tube Hydrogen Detector in a Dynamic Sodium System,” Nucl. Technol., 12;, 388 (1971).
  • M. D. BANUS, J. J. McSHARRY, and E. A. SULLIVAN, “The Sodium-Sodium Hydride-Hydrogen System at 500-600°C,” J. Am. Chem. Soc., 77, 2007 (1955).
  • A. HEROLD, “Contribution à l’Etude Des Hydrures Alcalines,” Ann. Chim. (Paris), 6, 536 (1951).
  • F. G. KEYES, “The Dissociation Pressures of Sodium and Potassium Hydrides,” J. Am. Chem. Soc., 34, 779 (1912).
  • E. F. SOLLERS and J. L. CRENSHAW, “The Dissociation Pressures of Potassium Deuteride and Potassium Hydride,” J. Am. Chem. Soc., 59, 2015 (1937).
  • R. KUMAR, Argonne National Laboratory, Private Communication (1973).
  • R. W. WEBB, “Permeation of Hydrogen Through Metals,” NAA-SR-10462, Atomics International (1965).
  • R. E. STICKNEY, “Diffusion and Permeation of Hydrogen Isotopes in Fusion Reactors: A Survey,” The Chemistry of Fusion Technology, D. M. GRUEN, Ed., p. 241, Plenum Press, New York (1972).
  • R. R. HEINRICH, C. E. JOHNSON, and C. E. CROUTHAMEL, “Hydrogen Permeation Studies,” J. Electrochem. Soc., 112, 1071 (1965).
  • V. A. MARONI et al., “Physical-Inorganic Chemistry Semiannual, January-June 1973,” ANL-8023, Argonne National Laboratory (1973).
  • D. LESTER, Hanford Engineering Development Laboratory, Private Communication (1973).
  • D. STEINER and A. P. FRAAS, “Preliminary Observations on the Radiological Implication of Fusion Power,” Nucl. Safety, 13, 5, 353 (1972).
  • R. B. HINGE, “Cold Trap Performance Limitations (A State of the Art Review),” Chem. Eng. Progr. Symp. Ser., 66, 104 (1970).
  • J. G. YEVICK and A. AMOROSI, “Fast Reactor Technology: Plant Design,” p. 224, MIT Press, Cambridge, Massachusetts (1966).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.