238
Views
69
CrossRef citations to date
0
Altmetric
Technology Evaluation

Computational prediction of human drug metabolism

, , , , , & show all
Pages 303-324 | Published online: 16 Aug 2005
 

Abstract

There is an urgent requirement within the pharmaceutical and biotechnology industries, regulatory authorities and academia to improve the success of molecules that are selected for clinical trials. Although absorption, distribution, metabolism, excretion and toxicity (ADME/Tox) properties are some of the many components that contribute to successful drug discovery and development, they represent factors for which we currently have in vitro and in vivo data that can be modelled computationally. Understanding the possible toxicity and the metabolic fate of xenobiotics in the human body is particularly important in early drug discovery. There is, therefore, a need for computational methodologies for uncovering the relationships between the structure and the biological activity of novel molecules. The convergence of numerous technologies, including high-throughput techniques, databases, ADME/Tox modelling and systems biology modelling, is leading to the foundation of systems-ADME/Tox. Results from experiments can be integrated with predictions to globally simulate and understand the likely complete effects of a molecule in humans. The development and early application of major components of MetaDrugTM (GeneGo, Inc.) software will be described, which includes rule-based metabolite prediction, quantitative structure–activity relationship models for major drug metabolising enzymes, and an extensive database of human protein–xenobiotic interactions. This represents a combined approach to predicting drug metabolism. MetaDrug can be readily used for visualising Phase I and II metabolic pathways, as well as interpreting high-throughput data derived from microarrays as networks of interacting objects. This will ultimately aid in hypothesis generation and the early triaging of molecules likely to have undesirable predicted properties or measured effects on key proteins and cellular functions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.