1,020
Views
36
CrossRef citations to date
0
Altmetric
Review

The application of engineered liver tissues for novel drug discovery

, & , PhD
Pages 519-540 | Published online: 03 Apr 2015
 

Abstract

Introduction: Drug-induced liver injury remains a major cause of drug attrition. Furthermore, novel drugs are being developed for treating liver diseases. However, differences between animals and humans in liver pathways necessitate the use of human-relevant liver models to complement live animal testing during preclinical drug development. Microfabrication tools and synthetic biomaterials now allow for the creation of tissue subunits that display more physiologically relevant and long-term liver functions than possible with declining monolayers.

Areas covered: The authors discuss acellular enzyme platforms, two-dimensional micropatterned co-cultures, three-dimensional spheroidal cultures, microfluidic perfusion, liver slices and humanized rodent models. They also present the use of cell lines, primary liver cells and induced pluripotent stem cell-derived human hepatocyte-like cells in the creation of cell-based models and discuss in silico approaches that allow integration and modeling of the datasets from these models. Finally, the authors describe the application of liver models for the discovery of novel therapeutics for liver diseases.

Expert opinion: Engineered liver models with varying levels of in vivo-like complexities provide investigators with the opportunity to develop assays with sufficient complexity and required throughput. Control over cell–cell interactions and co-culture with stromal cells in both two dimension and three dimension are critical for enabling stable liver models. The validation of liver models with diverse sets of compounds for different applications, coupled with an analysis of cost:benefit ratio, is important for model adoption for routine screening. Ultimately, engineered liver models could significantly reduce drug development costs and enable the development of more efficacious and safer therapeutics for liver diseases.

Acknowledgment

C Lin and KR Ballinger have equally contributed to this work.

Declaration of interest

All authors are supported by Colorado State University. Furthermore, S Khetani is a stockholder in Hepregen Corp. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.