894
Views
38
CrossRef citations to date
0
Altmetric
Reviews

High-throughput fluorescence imaging approaches for drug discovery using in vitro and in vivo three-dimensional models

, , &
Pages 1347-1361 | Published online: 22 Sep 2015
 

Abstract

Introduction: High-resolution microscopy using fluorescent probes is a powerful tool to investigate individual cell structure and function, cell subpopulations and mechanisms underlying cellular responses to drugs. Additionally, responses to drugs more closely resemble those seen in vivo when cells are physically connected in three-dimensional (3D) systems (either 3D cell cultures or whole organisms), as opposed to traditional monolayer cultures. Combined, the use of imaging-based 3D models in the early stages of drug development has the potential to generate biologically relevant data that will increase the likelihood of success for drug candidates in human studies.

Areas covered: The authors discuss current methods for the culturing of cells in 3D as well as approaches for the imaging of whole-animal models and 3D cultures that are amenable to high-throughput settings and could be implemented to support drug discovery campaigns. Furthermore, they provide critical considerations when discussing imaging these 3D systems for high-throughput chemical screenings.

Expert opinion: Despite widespread understanding of the limitations imposed by the two-dimensional versus the 3D cellular paradigm, imaging-based drug screening of 3D cellular models is still limited, with only a few screens found in the literature. Image acquisition in high throughput, accurate interpretation of fluorescent signal, and uptake of staining reagents can be challenging, as the samples are in essence large aggregates of cells. The authors recognize these shortcomings that need to be overcome before the field can accelerate the utilization of these technologies in large-scale chemical screens.

Acknowledgement

NJ Martinez, SA Titus and AK Wagner contributed equally to this work.

Declaration of interest

The authors are employees of and are supported by the National Institutes of Health. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Notes

This box summarizes key points contained in the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.