408
Views
122
CrossRef citations to date
0
Altmetric
Review

Growth factor-delivery systems for tissue engineering: a materials perspective

&
Pages 29-47 | Published online: 09 Jan 2014
 

Abstract

The transplantation of organs, their surgical reconstruction or implantation of synthetic devices that can perform the function of organs, are the currently available methods for treating loss of tissue/organs in humans. However, the limitations associated with these techniques have led to the development of tissue engineering. One of the primary goals of tissue engineering is to provide growth factor delivery systems that can induce desired cell responses both in vitro and in vivo, in order to cause accelerated tissue regeneration. To make growth factors a more therapeutically viable alternative for the treatment of chronic degenerative diseases, a wide range of natural and synthetic materials have been employed as vehicles for their controlled delivery. The choice of material and design of the carrier device influence the mode of immobilization of growth factors on the scaffolds and their local/systemic administration. From a tissue engineer’s perspective, materials could be used for designing scaffolds as well as for delivering single or multiple growth factors. Therefore, this review discusses growth factor delivery systems, with particular reference to carrier-based growth factor delivery systems with a focus on materials.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 570.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.