116
Views
34
CrossRef citations to date
0
Altmetric
Articles

Influences of nitrogen deficiency on the transcript levels of ammonium transporter, nitrate transporter and glutamine synthetase genes in Isochrysis galbana (Isochrysidales, Haptophyta)

, , , , &
Pages 521-533 | Received 13 Jun 2006, Accepted 02 May 2007, Published online: 22 Apr 2019
 

Abstract

L.-K. Kang, S.-P.L. Hwang, G.-C. Gong, H.-J. Lin, P.-C. Chen and J. Chang. 2007. Influences of nitrogen deficiency on the transcript levels of ammonium transporter, nitrate transporter and glutamine synthetase genes in Isochrysis galbana (Isochrysidales, Haptophyta). Phycologia 46: 521–533. DOI: 10.2216/06-44.1

Three DNA fragments belonging to genes involved in nitrogen uptake and assimilation, including a nitrate transporter gene (IgNrt2), an ammonium transporter gene (IgAmt), and a glutamine synthetase gene (IgglnII), were obtained from the marine haptophyte, Isochrysis galbana. Based on alignments of the deduced amino acid sequences, the IgNRT2 fragment shared 47% identity with the Cylindrotheca fusiformis (Bacillariophyceae) nitrate transporter, the IgAMT fragment shared 48% identity with the C. fusiformis ammonium transporter, and the IgGSII fragment shared 61% identity with Skeletonema costatum (Bacillariophyceae) glutamine synthetase. Southern hybridization indicated that both IgNrt2 and IgAmt may have more than one copy in the genome of I. galbana, but only a single copy was detected for IgglnII. The transcript abundances of these three genes under various nitrogen-supply conditions were monitored simultaneously by quantitative real-time polymerase chain reaction (PCR). In the presence of ammonium, both IgNrt2 and IgAmt were severely repressed with mean mRNA concentrations of 0.67 and 3.45 µmol (mol 18S rRNA)−1. IgNrt2 and IgAmt mRNA transcripts increased 41-fold and 8.3-fold, respectively, in the presence of nitrate, and increased 160-fold and 15-fold, respectively, in the nitrogen-depleted condition. The mRNA level of IgglnII was low in cells grown in the presence of ammonium [3.98 µmol (mol 18S rRNA)−1], but mild increases in the range of 2- to 4-fold were observed in cells grown in both nitrate-containing and nitrogen-depleted cultures. Our results demonstrated that the expression patterns of IgNrt2, IgAmt, and IgglnII shared a common trend with their homologous genes in diatoms and green algae under various nitrogen-supply conditions. This group of genes could be used as indicators in natural environments to estimate the degree of nitrogen deficiency and chemical forms of nitrogenous nutrients in use on a species-specific basis.

ACKNOWLEDGMENTS

We thank the Core Facility of the Institute of Cellular and Organismic Biology, Academia Sinica, for assistance in DNA sequencing. This study was supported in part by research grants NSC 92-2313-B-019-050 and 93-2313-B-019-037 from by the National Science Council (R.O.C.) and in part by funds from the Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 283.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.