221
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Regulation of UGT1A expression by miR-298 in human livers from the Han Chinese population and in human cell lines

, , , , , , & show all
Pages 43-57 | Received 20 May 2017, Accepted 25 Sep 2017, Published online: 27 Nov 2017
 

Abstract

Aim: This study aimed to investigate the role of miRNAs in UGT1A regulation. Materials&methods: Based on bioinformatic prediction results, luciferase reporter assay and cell-transfection experiments were performed to study effects of miR-298 on UGT1A expression. Correlation study was conducted in human livers. Results: miR-298 overexpression reduced mRNA level of UGT1A1 and UGT1A4 in HepG2 and LS174T cells, and that of UGT1A3 and UGT1A9 in LS174T cells. miR-298 repression increased mRNA level of UGT1A4 in HepG2 and LS174T cells, and that of UGT1A1 and UGT1A3 in LS174T cells. Inverse correlations between miR-298, as well as miR-491–3p, and UGT1A3 and 1A4 mRNA levels were observed in livers. Conclusion: The study demonstrates that miR-298 and miR-491–3p downregulates UGT1A expression.

Financial&competing interests disclosure

This work was supported by the National Natural Science Foundation of China (grant number 81173127) and the Joint Funds of the National Natural Science Foundation of China-Henan province (grant number U1604163). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81173127) and the Joint Funds of the National Natural Science Foundation of China-Henan province (grant number U1604163). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 130.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.