138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using Chitosan-Stabilized, Hyaluronic Acid-Modified Selenium Nanoparticles to Deliver CD44-Targeted PLK1 siRNAs for Treating Bladder Cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 259-277 | Received 05 Aug 2022, Accepted 14 Feb 2023, Published online: 26 Apr 2023
 

Abstract

Aims: Achieving an effective biocompatible system for siRNAs delivery to the tumor site remains a significant challenge. Materials & methods: Selenium nanoparticles (SeNPs) modified by chitosan (CS) and hyaluronic acid (HA) were fabricated for PLK1 siRNAs (siPLK1) delivery to the bladder cancer cells. The HA-CS-SeNP@siPLK1 efficacy was evaluated using in vitro and in vivo models. Results: HA-CS-SeNP@siPLK1 was selectively internalized into T24 cells through clathrin-mediated endocytosis. Treatment with HA-CS-SeNP@siPLK1 successfully silenced the PLK1 gene, inhibited cell proliferation and induced cell cycle arrest in vitro. HA-CS-SeNP@siPLK1 could also inhibit tumor growth in vivo without causing systemic toxicity. Conclusion: Our results suggest that HA-CS-SeNPs may provide a good vehicle for delivering siPLK1 to the bladder tumor site.

Plain language summary

siRNAs are small biomolecules shown as novel insights in cancer gene therapy because of their capability to silence target genes. However, achieving an effective biocompatible system for siRNA delivery to the tumor site remains a significant challenge. This work aimed to develop a nanoparticle-based delivery system consisting of selenium nanoparticles modified by chitosan and hyaluronic acid to sustain the release of siRNAs to bladder cancer cells. The results of this study demonstrated that this nanosystem successfully silenced the PLK1 gene and reduced the proliferation in vitro and in vivo. These findings suggest that hyaluronic acid-chitosan-selenium nanoparticles may open a new insight for targeted gene therapy for bladder cancer.

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at: www.tandfonline.com/doi/suppl/10.2217/nnm-2022-0198

Financial & competing interests disclosure

This work was supported by grant no. 12414 from the Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences (Yazd, Iran). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The present research was approved by the ethics committee of the Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences.

Additional information

Funding

This work was supported by grant no. 12414 from the Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences (Yazd, Iran). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 236.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.