138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using Chitosan-Stabilized, Hyaluronic Acid-Modified Selenium Nanoparticles to Deliver CD44-Targeted PLK1 siRNAs for Treating Bladder Cancer

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 259-277 | Received 05 Aug 2022, Accepted 14 Feb 2023, Published online: 26 Apr 2023

References

  • Sung H, Ferlay J, Siegel RL et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249 (2021).
  • Eckstein M, Kimmel C, Bruendl J et al. Tumor budding correlates with tumor invasiveness and predicts worse survival in pT1 non-muscle-invasive bladder cancer. Sci. Rep. 11(1), 1–9 (2021).
  • Yassaie O, Chehroudi C, Black PC. Novel and emerging approaches in the management of non-muscle invasive urothelial carcinoma. Ther. Adv. Med. Oncol. 13, 1–14 (2021).
  • Nason GJ, Ajib K, Tan GH, Kulkarni GS. Bladder-sparing treatment options in localized muscle-invasive bladder cancer. Expert Rev. Anticancer Ther. 20(3), 179–188 (2020).
  • Ebbing J, Heckmann RC, Collins JW et al. Oncological outcomes, quality of life outcomes and complications of partial cystectomy for selected cases of muscle-invasive bladder cancer. Sci. Rep. 8(1), 1–19 (2018).
  • Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin. 70(5), 404–423 (2020).
  • Shakeel I, Basheer N, Hasan GM, Afzal M, Hassan MI. Polo-like kinase 1 as an emerging drug target: structure, function and therapeutic implications. J. Drug Target. 29(2), 168–184 (2021).
  • Seyedabadi S, Saidijam M, Najafi R et al. Assessment of CEP55, PLK1 and FOXM1 expression in patients with bladder cancer in comparison with healthy individuals. Cancer Invest. 36(8), 407–414 (2018).
  • Yamamoto Y, Matsuyama H, Kawauchi S et al. Overexpression of polo-like kinase 1 (PLK1) and chromosomal instability in bladder cancer. Oncology 70(3), 231–237 (2006).
  • Zhang Z, Zhang G, Kong C. Targeted inhibition of Polo-like kinase 1 by a novel small-molecule inhibitor induces mitotic catastrophe and apoptosis in human bladder cancer cells. J. Cell. Mol. Med. 21(4), 758–767 (2017).
  • Liu Z, Sun Q, Wang X. PLK1, a potential target for cancer therapy. Transl. Oncol. 10(1), 22–32 (2017).
  • Reda M, Ngamcherdtrakul W, Nelson MA et al. Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat. Commun. 13(1), 1–11 (2022).
  • Seth S, Matsui Y, Fosnaugh K et al. RNAi-based therapeutics targeting survivin and PLK1 for treatment of bladder cancer. Mol. Ther. 19(5), 928–935 (2011).
  • Bidar N, Darroudi M, Ebrahimzadeh A et al. Simultaneous nanocarrier-mediated delivery of siRNAs and chemotherapeutic agents in cancer therapy and diagnosis: recent advances. Eur. J. Pharmacol. 915, 174639 (2022).
  • Shahidi M, Abazari O, Bakhshi A et al. Multicomponent siRNA/miRNA-loaded modified mesoporous silica nanoparticles targeted bladder cancer for a highly effective combination therapy. Front. Bioeng. Biotechnol. 10, 949704 (2022).
  • Xia Y, Xu T, Wang C et al. Novel functionalized nanoparticles for tumor-targeting co-delivery of doxorubicin and siRNA to enhance cancer therapy. Int. J. Nanomed. 13, 143 (2018).
  • Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med. 127, 80–97 (2018).
  • Collery P. Strategies for the development of selenium-based anticancer drugs. J. Trace Elem. Med. Biol. 50, 498–507 (2018).
  • Radomska D, Czarnomysy R, Radomski D, Bielawski K. Selenium compounds as novel potential anticancer agents. Int. J. Mol. Sci. 22(3), 1009 (2021).
  • Lin W, Zhang J, Xu J-F, Pi J. The advancing of selenium nanoparticles against infectious diseases. Front. Pharmacol. 12, 1971 (2021).
  • Guo M, Li Y, Lin Z et al. Surface decoration of selenium nanoparticles with curcumin induced HepG2 cell apoptosis through ROS mediated p53 and AKT signaling pathways. RSC Adv. 7(83), 52456–52464 (2017).
  • Li T, Xu H. Selenium-containing nanomaterials for cancer treatment. Cell Reports Phys. Sci. 1(7), 100111 (2020).
  • Maiyo F, Singh M. Folate-targeted mRNA delivery using chitosan-functionalized selenium nanoparticles: potential in cancer immunotherapy. Pharmaceuticals 12(4), 164 (2019).
  • Shahidi M, Abazari O, Dayati P et al. Aptamer-functionalized chitosan-coated gold nanoparticle complex as a suitable targeted drug carrier for improved breast cancer treatment. Nanotechnol. Rev. 11(1), 2875–2890 (2022).
  • Xia Y, Lin Z, Li Y et al. Targeted delivery of siRNA using RGDfC-conjugated functionalized selenium nanoparticles for anticancer therapy. J. Mater. Chem. B 5(33), 6941–6952 (2017).
  • Shahidi M, Abazari O, Dayati P, Haghiralsadat BF, Oroojalian F, Tofighi D. Targeted delivery of 5-fluorouracil, miR-532-3p and si-KRAS to colorectal tumor using layer-by-layer liposomes. Front. Bioeng. Biotechnol. 10, 1013541 (2022).
  • Xu H, Niu M, Yuan X, Wu K, Liu A. CD44 as a tumor biomarker and therapeutic target. Exp. Hematol. Oncol. 9(1), 1–14 (2020).
  • Zhou J-Y, Chen M, Ma L, Wang X, Chen Y-G, Liu S-L. Role of CD44high/CD133high HCT-116 cells in the tumorigenesis of colon cancer. Oncotarget 7(7), 7657 (2016).
  • Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J. Hematol. Oncol. 11(1), 1–23 (2018).
  • Diaz-Salmeron R, Michel J-P, Hadji H et al. Role of the interactions of soft hyaluronan nanomaterials with CD44 and supported bilayer membranes in the cellular uptake. Colloids Surf. B Biointerfaces 205, 111916 (2021).
  • Xia Y, Tang G, Chen Y et al. Tumor-targeted delivery of siRNA to silence Sox2 gene expression enhances therapeutic response in hepatocellular carcinoma. Bioact. Mater. 6(5), 1330–1340 (2021).
  • Kim J, Chang J-Y, Kim Y-Y, Kim M-J, Kho H-S. Effects of molecular weight of hyaluronic acid on its viscosity and enzymatic activities of lysozyme and peroxidase. Arch. Oral Biol. 89, 55–64 (2018).
  • Oroojalian F, Babaei M, Taghdisi SM, Abnous K, Ramezani M, Alibolandi M. Encapsulation of thermo-responsive gel in pH-sensitive polymersomes as dual-responsive smart carriers for controlled release of doxorubicin. J. Control. Rel. 288, 45–61 (2018).
  • Huang Y, Long B, Tang M et al. Bifunctional catalytic material: an ultrastable and high-performance surface defect CeO2 nanosheets for formaldehyde thermal oxidation and photocatalytic oxidation. Appl. Catal. B Environ. 181, 779–787 (2016).
  • Xia Y, Guo M, Xu T et al. siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy. Int. J. Nanomed. 13, 1539 (2018).
  • Weng J, Han X, Liu K et al. CD44 3′-untranslated region functions as a competing endogenous RNA to enhance NK sensitivity of liver cancer stem cell by regulating ULBP2 expression. Int. J. Biol. Sci. 15(8), 1664 (2019).
  • Zhang X, Huang Z, Wang J et al. Targeting feedforward loops formed by nuclear receptor RORγ and kinase PBK in mCRPC with hyperactive AR signaling. Cancers (Basel) 13(7), 1672 (2021).
  • Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal. Biochem. 236(2), 302–308 (1996).
  • Khodaverdi E, Hadizadeh F, Hoseini N et al. In-vitro and in-vivo evaluation of sustained-release buprenorphine using in-situ forming lipid-liquid crystal gels. Life Sci. 314, 121324 (2023).
  • Hirsch FR, McElhinny A, Stanforth D et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J. Thorac. Oncol. 12(2), 208–222 (2017).
  • Loo DT. In situ detection of apoptosis by the TUNEL assay: an overview of techniques. In: DNA Damage Detect. Situ, Ex Vivo, Vivo. Springer, NY, Dordrecht, Heidelberg, London, 682, 3–13 (2011).
  • Abstiens K, Figueroa SM, Gregoritza M, Goepferich AM. Interaction of functionalized nanoparticles with serum proteins and its impact on colloidal stability and cargo leaching. Soft Matter 15(4), 709–720 (2019).
  • Menon S, Ks SD, Santhiya R, Rajeshkumar S, Kumar V. Selenium nanoparticles: a potent chemotherapeutic agent and an elucidation of its mechanism. Colloids Surf. B Biointerfaces 170, 280–292 (2018).
  • Iliaki S, Beyaert R, Afonina IS. Polo-like kinase 1 (PLK1) signaling in cancer and beyond. Biochem. Pharmacol. 193, 114747 (2021).
  • Elsayed I, Wang X. PLK1 inhibition in cancer therapy: potentials and challenges. Future Med. Chem. 11(12), 1383–1386 (2019).
  • Dietrich P, Freese K, Mahli A, Thasler WE, Hellerbrand C, Bosserhoff AK. Combined effects of PLK1 and RAS in hepatocellular carcinoma reveal rigosertib as promising novel therapeutic ‘dual-hit’ option. Oncotarget 9(3), 3605 (2018).
  • Song R, Hou G, Yang J et al. Effects of PLK1 on proliferation, invasion and metastasis of gastric cancer cells through epithelial–mesenchymal transition. Oncol. Lett. 16(5), 5739–5744 (2018).
  • Zhang Z, Zhang G, Kong C. High expression of polo-like kinase 1 is associated with the metastasis and recurrence in urothelial carcinoma of bladder. In: Urologic Oncology: Seminars and Original Investigations. Elsevier, 1222–1230 (2013).
  • de Cárcer G, Venkateswaran SV, Salgueiro L et al. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat. Commun. 9(1), 1–14 (2018).
  • Lam JKW, Chow MYT, Zhang Y, Leung SWS. siRNA versus miRNA as therapeutics for gene silencing. Mol. Ther. Acids 4, e252 (2015).
  • Zheng W, Yin T, Chen Q et al. Co-delivery of Se nanoparticles and pooled SiRNAs for overcoming drug resistance mediated by P-glycoprotein and class III β-tubulin in drug-resistant breast cancers. Acta Biomater. 31, 197–210 (2016).
  • Pourpirali R, Mahmoudnezhad A, Oroojalian F, Zarghami N, Pilehvar Y. Prolonged proliferation and delayed senescence of the adipose-derived stem cells grown on the electrospun composite nanofiber co-encapsulated with TiO2 nanoparticles and metformin-loaded mesoporous silica nanoparticles. Int. J. Pharm. 604, 120733 (2021).
  • Xia Y, Zhao M, Chen Y et al. Folate-targeted selenium nanoparticles deliver therapeutic siRNA to improve hepatocellular carcinoma therapy. RSC Adv. 8(46), 25932–25940 (2018).
  • Sheikhlou K, Allahyari S, Sabouri S, Najian Y, Jafarizadeh-Malmiri H. Walnut leaf extract-based green synthesis of selenium nanoparticles via microwave irradiation and their characteristics assessment. Open Agric. 5(1), 227–235 (2020).
  • Patra JK, Das G, Fraceto LF et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 1–33 (2018).
  • Munir MU. Nanomedicine penetration to tumor: challenges, and advanced strategies to tackle this issue. Cancers (Basel) 14(12), 2904 (2022).
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20(2), 101–124 (2021).
  • Pochapski DJ, Carvalho dos Santos C, Leite GW, Pulcinelli SH, Santilli CV. Zeta potential and colloidal stability predictions for inorganic nanoparticle dispersions: effects of experimental conditions and electrokinetic models on the interpretation of results. Langmuir 37(45), 13379–13389 (2021).
  • de Brito e Cunha D, Frederico ABT, Azamor T et al. Biotechnological evolution of siRNA molecules: from bench tool to the refined drug. Pharmaceuticals 15(5), 575 (2022).
  • Li S-R, Huo F-Y, Wang H-Q et al. Recent advances in porous nanomaterials-based drug delivery systems for cancer immunotherapy. J. Nanobiotechnol. 20(1), 1–19 (2022).
  • Goyal R, Chopra H, Dua K, Gautam RK. Insights on prospects of nano-siRNA based approaches in treatment of cancer. Front. Pharmacol. 13, 3502 (2022).
  • Naidoo S, Daniels A, Habib S, Singh M. Poly-l-lysine–lactobionic acid-capped selenium nanoparticles for liver-targeted gene delivery. Int. J. Mol. Sci. 23(3), 1492 (2022).
  • Cai J, Fu J, Li R, Zhang F, Ling G, Zhang P. A potential carrier for antitumor targeted delivery-hyaluronic acid nanoparticles. Carbohydr. Polym. 208, 356–364 (2019).
  • Mei H, Cai S, Huang D, Gao H, Cao J, He B. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: from intrinsic physicochemical properties to external modification. Bioact. Mater. 8, 220–240 (2022).
  • Lian D, Chen Y, Xu G et al. Delivery of siRNA targeting HIF-1α loaded chitosan modified d-α-tocopheryl polyethylene glycol 1000 succinate-b-poly (ε-caprolactone-ran-glycolide) nanoparticles into nasopharyngeal carcinoma cell to improve the therapeutic efficacy of cisplatin. RSC Adv. 6(44), 37740–37749 (2016).
  • Johnson DE, Ostrowski P, Jaumouillé V, Grinstein S. The position of lysosomes within the cell determines their luminal pH. J. Cell Biol. 212(6), 677–692 (2016).
  • Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17(2), 93–115 (2017).
  • Shahidi M, Moradi A, Dayati P. Zingerone attenuates zearalenone-induced steroidogenesis impairment and apoptosis in TM3 Leydig cell line. Toxicon 211, 50–60 (2022).
  • Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton 75(11), 481–494 (2018).
  • Gheghiani L, Wang L, Zhang Y et al. PLK1 induces chromosomal instability and overrides cell-cycle checkpoints to drive tumorigenesis. Cancer Res. 81(5), 1293–1307 (2021).
  • Urbán P, Liptrott NJ, Bremer S. Overview of the blood compatibility of nanomedicines: a trend analysis of in vitro and in vivo studies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 11(3), e1546 (2019).
  • de la Harpe KM, Kondiah PPD, Choonara YE, Marimuthu T, du Toit LC, Pillay V. The hemocompatibility of nanoparticles: a review of cell–nanoparticle interactions and hemostasis. Cells 8(10), 1209 (2019).
  • Edis Z, Wang J, Waqas MK, Ijaz M, Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int. J. Nanomed. 16, 1313 (2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.