145
Views
0
CrossRef citations to date
0
Altmetric
Research Article

New Pegylated Polyaspartamide-Based Polyplexes as Gene Delivery Vectors

, , , &
Pages 243-258 | Published online: 11 Feb 2010
 

Abstract

Aims: To synthesize novel polyhydroxyethylaspartamide (PHEA) copolymers containing spermine (Spm) and polyethylene glycol (PEG) moieties in high yields, with the expectation that this material would show stealth properties and the ability to complex DNA by electrostatic interactions. Materials & methods: PHEA–PEG–Spm copolymer was prepared with a two-step reaction. Chemical, physicochemical and biological characterizations of PHEA–PEG–Spm copolymers and their obtained polyplexes with pDNA were performed. Results: The introduction of spermine in PHEA structure allows to obtain a copolymer bearing in the side chains polyamine moieties capable to interact with DNA. On the other hand, the introduction of PEG in polymeric structure increased the DNA condensing ability of PHEA–PEG–Spm copolymer in comparison with the derivatives without PEG (PHEA-Spm), and improved its characteristics of biocompatibility. Conclusions: PHEA–PEG–Spm copolymer shows excellent ability to complex and condense plasmidic DNA giving interpolyelectrolyte complexes to act as gene delivery systems. Moreover, PEGylation confers to the obtained interpolyelectrolyte complexes stealth properties.

Financial & competing interests disclosure

The authors thank the Ministero dell‘Istruzione, dell‘Università e della Ricerca (MIUR; Rome, Italy) for funding. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Ethical conduct of research

The authors state that they have obtained appropriate institutional review board approval or have followed the principles outlined in the Declaration of Helsinki for all human or animal experimental investigations. In addition, for investigations involving human subjects, informed consent has been obtained from the participants involved.

Additional information

Funding

The authors thank the Ministero dell‘Istruzione, dell‘Università e della Ricerca (MIUR; Rome, Italy) for funding. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 236.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.