590
Views
0
CrossRef citations to date
0
Altmetric
Review

Microencapsulated Stem Cells for Tissue Repairing: Implications in Cell-Based Myocardial Therapy

, , &
Pages 733-745 | Published online: 17 Sep 2009
 

Abstract

Stem cells have the unique properties of self-renewal, pluripotency and a high proliferative capability, which contributes to a large biomass potential. Hence, these cells act as a useful source for acquiring renewable adult cell lines. This, in turn, acts as a potent therapeutic tool to treat various diseases related to the heart, liver and kidney, as well as neurodegenerative diseases such as Parkinson‘s and Alzheimer‘s disease. However, a major problem that must be overcome before it can be effectively implemented into the clinical setting is a suitable delivery system that can retain an optimal quantity of the cells at the targeted site for a maximal clinical benefit; a system that will give a mechanical as well as an immune protection to the foreign cells, while at the same time enhancing the yields of differentiated cells, maintaining cell microenvironments and sustaining the differentiated cell functions. To address this issue we opted for a novel delivery system, termed the ‘artificial cells‘, which are semipermeable microcapsules with strong and thin multilayer membrane components with specific mass transport properties. Here, we briefly introduce the concept of artificial cells for encapsulation of stem cells and investigate the application of microencapsulation technology as an ideal tool for all stem transplantations and relate their role to the emerging field of cellular cardiomyoplasty.

Financial & competing interests disclosure

The authors would like to acknowledge the support of research grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

The authors would like to acknowledge the support of research grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.