590
Views
0
CrossRef citations to date
0
Altmetric
Review

Microencapsulated Stem Cells for Tissue Repairing: Implications in Cell-Based Myocardial Therapy

, , &
Pages 733-745 | Published online: 17 Sep 2009

Bibliography

  • HansenLT, Ian-WojtasPM, JinYL, PaulsonAT: Survival of Ca–alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol.19(1) , 35–45 (2002).
  • ParkJK, ChangHN: Microencapsulation of microbial cells. Biotechnol. Adv.18(4) , 303–319 (2000).
  • OriveG, HernandezRM, GasconAR, IgartuaM, PedrazJL: Controversies over stem cell research. Trends Biotechnol.21(3) , 109–112 (2003).
  • ChangTMS: Semipermeable microcapsules. Science146(3643) , 524–525 (1964).
  • HuaL, AokiT, JinZet al.: Elevation of serum albumin levels in nagase analbuminemic rats by allogeneic bone marrow cell transplantation. Eur. Surg. Res.37(2) , 111–114 (2005).
  • ShermanW, MartensTP, GonzalezJF, SiminiakT: Catheter-based delivery of cells to the heart. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1) , S57–S64 (2006).
  • BehrL, HekmatiM, FromontGet al.: Intra renal arterial injection of autologous mesenchymal stem cells in an ovine model in the postischemic kidney. Nephron Physiol.107(3) , 65–76 (2007).
  • FujiiH, HiroseT, OeSet al.: Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J. Hepatol.36(5) , 653–659 (2002).
  • ArbabAS, JordanEK, WilsonLB, YocumGT, LewisBK, FrankJA: In vivo trafficking and targeted delivery of magnetically labeled stem cells. Hum. Gene Ther.15(4) , 351–360 (2004).
  • LiuZC, ChangTMS: Transdifferentiation of bioencapsulated bone marrow cells into hepatocyte-like cells in the 90% hepatectomized rat model. Liver Transpl.12(4) , 566–572 (2006).
  • EschJS, KnoefelWT, KleinMet al.: Portal application of autologous CD133+ bone marrow cells to the liver: a novel concept to support hepatic regeneration. Stem Cells23(4) , 463–470 (2005).
  • DibN, MichlerRE, PaganiFDet al.: Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation112(12) , 1748–1755 (2005).
  • WollertKC, MeyerGP, LotzJet al.: Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST randomized controlled clinical trial. Lancet364(9429) , 141–148 (2004).
  • ThompsonCA, NasseriBA, MakowerJet al.: Percutaneous transvenous cellular cardiomyoplasty: a novel nonsurgical approach for myocardial cell transplantation. J. Am. Coll. Cardiol.41(11) , 1964–1971 (2003).
  • SunZJ, LuGJ, LiSYet al.: Differential role of microenvironment in microencapsulation for improved cell tolerance to stress. Appl. Microbiol. Biotechnol.75(6) , 1419–1427 (2007).
  • OriveG, HernándezRM, GascónAR, IgartuaM, PedrazJL: Survival of different cell lines in alginate–agarose microcapsules. Eur. J. Pharm. Sci.18 , 23–30 (2003).
  • PrakashS, ChangTMS: Preparation and in vitro analysis of microencapsulated genetically-engineered Escherichia coli dh5 cells for urea and ammonia removal. Biotechnol. Bioeng.46(6) , 621–626 (1995).
  • ChristensenL, DionneKE, LysaghtMJ: Biomedical applications of immobilized cells. In: Fundamentals of Animal Cell Encapsulation and Immobilization. Goosen MFA (Ed.). CRC Press, Boca Raton, FL, USA 7–29 (1993).
  • ChangTMS, PrakashS: Therapeutic uses of microencapsulated genetically engineered cells. Mol. Med. Today4(5) , 221–227 (1998).
  • OriveG, HernándezRM, Rodríguez Gascón A et al.: History, challenges and perspectives of cell microencapsulation. Trends Biotechnol.22(2) , 87–92 (2004).
  • PrakashS, ChangTMS: Microencapsulated genetically engineered live E. coli DH5 cells administered orally to maintain normal plasma urea level in uremic rats. Nat. Med.2(8) , 883–887 (1996).
  • PrakashS, ChangTMS: Artificial cells microencapsulated genetically engineered E. coli DH5 cells for the lowering of plasma creatinine in vitro and in vivo. Artif. Cells Blood Substit. Immobil. Biotechnol.28(5) , 397–408 (2000).
  • PrakashS, ChangTM: Artificial cell microcapsules containing genetically engineered E. coli DH5 cells for in vitro lowering of plasma potassium, phosphate, magnesium, sodium, chloride, uric acid, cholesterol, and creatinine: a preliminary report. Artif. Cell Blood Substit. Biotechnol.27(5–6) , 475–481 (1999).
  • Soon-ShiongP, HeintzRE, MeridethNet al.: Insulin independence in a Type 1 diabetic patient after encapsulated islet transplantation. Lancet343(8903) , 950–951 (1994).
  • CalafioreR, BastaG: Artificial pancreas to treat Type 1 diabetes mellitus. Methods Mol. Med.140 , 197–236 (2007).
  • ChangTMS, PrakashS: Procedures for microencapsulation of enzymes, cells and genetically engineered microorganisms. Mol. Biotechnol.17(3) , 249–260 (2001).
  • PrakashS, JonesML: Artificial cell therapy: new strategies for the therapeutic delivery of live bacteria. J. Biomed. Biotechnol.2005(1) , 44–56 (2005).
  • HaqueT, ChenH, OuyangWet al.: Investigation of a new microcapsule membrane combining alginate, chitosan, polyethylene glycol and poly-L-lysine for cell transplantation applications. Int. J. Artif. Organs28(6) , 631–637 (2005).
  • PrakashS, BathenaJ: Live immobilised cells as new therapeutics. J. Drug Deliv. Sci. Technol.18(1) , 3–14 (2008).
  • EikmeierH, WestmeierF, RehmHJ: Morphological development of Aspergillus niger immobilized in Ca–alginate and k-carrageenan. Appl. Microbiol. Biotechnol.19 , 53–57 (1984).
  • HansenLT, Allan-WojtasPM, JinYL, PaulsonAT: Survival of Ca–alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol.19(1) , 35–45 (2002).
  • NortonS, LacroixC, VuillemardJC: Effect of pH on the morphology of Lactobacillus helveticus in free cell batch and immobilized-cell continuous fermentation. Food Biotechnol.7 , 235–251 (1993).
  • BartkowiakA, HunkelerD: Alginate–oligochitosan microcapsules. II. Control of mechanical resistance and permeability of the membrane. Chem. Mater.12(1) , 206–212 (2000).
  • AwreyDE, TseM, HortelanoG, ChangPL: Permeability of alginate microcapsules to secretory recombinant gene products. Biotechnol. Bioeng.52(4) , 472–484 (1996).
  • StrandBL, GaserodO, KulsengB, EspevikT, Skjak-BaekG: Alginate–polylysine–alginate microcapsules: effect of size reduction on capsule properties. J. Microencapsul.19(5) , 615–630 (2002).
  • RehorA, CanapleL, ZhangZ, HunkelerD: The compressive deformation of multicomponent microcapsules: influence of size, membrane thickness, and compression speed. J. Biomater. Sci. Polym. Ed.12(2) , 157–170 (2001).
  • WangT, LacíkI, BrissováMet al.: An encapsulation system for the immunoisolation of pancreatic islets. Nat. Biotechnol.15(4) , 358–362 (1997).
  • TseM, UludagH, SeftonMV, ChangPL: Secretion of recombinant proteins from hydroxyethyl methacrylate–methyl methacrylate capsules. Biotechnol. Bioeng.51(3) , 271–280 (1996).
  • CrooksCA, DouglasJA, BroughtonRL, SeftonMV: Microencapsulation of mammalian cells in a HEMA–MMA copolymer: effects on capsule morphology and permeability. J. Biomed. Mater. Res.24(9) , 1241–1262 (2004).
  • CaiX, LinY, OuGet al.: Ectopic osteogenesis and chondrogenesis of bone marrow stromal stem cells in alginate system. Cell Biol. Int.31(8) , 776–783 (2007).
  • ZilbermanY, TurgemanG, PelledGet al.: Polymer-encapsulated engineered adult mesenchymal stem cells secrete exogenously regulated rhBMP-2, and induce osteogenic and angiogenic tissue formation. Polym. Adv. Technol.13(10–12) , 863–870 (2002).
  • MuruaA, PorteroA, OriveG, HernándezRM, CastroM, PedrazJL: Cell microencapsulation technology: towards clinical application. J. Control. Release132(2) , 76–83 (2008).
  • StolzingA, ScuttA: Age-related impairment of mesenchymal progenitor cell function. Aging Cell5(3) , 213–224 (2006).
  • ZhangH, ZhuSJ, WangW, WeiYJ, HuSS: Transplantation of microencapsulated genetically modified xenogeneic cells augments angiogenesis and improves heart function. Gene Ther.15(1) , 40–48 (2008).
  • KamihataH, MatsubaraH, NishiueTet al.: Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation104(9) , 1046–1052 (2001).
  • AtouiR, AsenjoJF, DuongM, ChenG, ChiuRC, Shum-TimD: Marrow stromal cells as universal donor cells for myocardial regenerative therapy: their unique immune tolerance. Ann. Thorac. Surg.85(2) , 571–579 (2008).
  • MaguireT, NovikE, SchlossR, YarmushM: Alginate–PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes. Biotechnol Bioeng.93(3) , 581–591 (2006).
  • LiuZ, ChangTMS: Effects of bone marrow cells on hepatocytes: when co-cultured or co-encapsulated together. Artif. Cells Blood Substit. Immobil. Biotechnol.28(4) , 365–374 (2000).
  • LiuZ, ChangTMS: Coencapsulation hepatocytes and bone marrow stem cells: in vitro conversion of ammonia and in vivo studies on the lowering of bilirubin in Gunn rats after transplantation. Int. J. Artif. Organs26(6) , 491–497 (2003).
  • SteinertA, WeberM, DimmlerAet al.: Chondrogenic differentiation of mesenchymal progenitor cells encapsulated in ultrahigh viscosity alginate. J. Orthop. Res.21(6) , 1090–1097 (2003).
  • HwangYS, ChoJ, TayFet al.: The use of murine embryonic stem cells, alginate encapsulation, and rotary microgravity bioreactor in bone tissue engineering. Biomaterials30(4) , 499–507 (2009).
  • SakaiS, HashimotoI, KawakamiK: Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules. Biotechnol. Bioeng.99(1) , 235–243 (2008).
  • DeanSK, YulyanaY, WilliamsG, SidhuKS, TuchBE : Differentiation of encapsulated embryonic stem cells after transplantation. Transplantation82(9) , 1175–84 (2006).
  • OrlicD, HillJ, AraiA: Stem cells for myocardial regeneration. Circ. Res.91 , 1092–1102 (2002).
  • SmitsAM, VlietP, MetzCHet al.: Human cardiomyocyte progenitor cells differentiate into functional mature cardiomyocytes: an in vitro model for studying human cardiac physiology and pathophysiology. Nat. Protoc.4(2) , 232–243 (2009).
  • TaylorDA, AtkinsBZ, HungspreugsPet al.: Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med.4(8) , 929–933 (1998).
  • GhostineS, CarrionC, SouzaLCet al.: Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation.106(Suppl. 1) I131–I136 (2002).
  • KolossovE, BostaniT, RoellWet al.: Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J. Exp. Med.203(10) , 2315–2327 (2006).
  • KofidisT, LeblDR, SwijnenburgRJ, GreeveJM, KlimaU, RobbinsRC: Allopurinol/uricase and ibuprofen enhance engraftment of cardiomyocyte-enriched human embryonic stem cells and improve cardiac function following myocardial injury. Eur. J. Cardiothorac. Surg.29(1) , 50–55 (2006).
  • BeltramiAP, BarlucchiL, TorellaDet al.: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell114(6) , 763–776 (2003).
  • ChandyT, MooradianDL, RaoGH: Evaluation of modified alginate–chitosan–polyethylene glycol microcapsules for cell encapsulation. Artif. Organs23(10) , 894–903 (1999).
  • LaugwitzKL, MorettiA, LamJet al.: Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature433(7026) , 647–653 (2005).
  • LaflammeMA, MurryCE: Regenerating the heart. Nat. Biotechnol.23(7) , 845–856 (2005).
  • XuM, WaniM, DaiYSet al.: Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation110(17) , 2658–2665 (2004).
  • LiX, YuX, LinQet al.: Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J. Mol. Cell. Cardiol.42(2) , 295–303 (2007).
  • TomaC, PittengerMF, CahillKS, ByrneBJ, KesslerPD: Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation105(1) , 93–98 (2002).
  • OrlicD, KajsturaJ, ChimentiSet al.: Bone marrow cells regenerate infarcted myocardium. Nature410(6829) , 701–705 (2001).
  • FuchsS, SatlerLF, KornowskiRet al.: Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J. Am. Coll. Cardiol.41(10) , 1721–1724 (2003).
  • HamanoK, NishidaM, HirataKet al.: Local implantation of autologous bone marrow cells for therapeutic angiogenesis in patients with ischemic heart disease: clinical trial and preliminary results. Jpn Circ. J.65(9) , 845–847 (2001).
  • HendrikxM, HensenK, ClijstersCet al.: Recovery of regional but not global contractile function by the direct intramyocardial autologous bone marrow transplantation: results from a randomized controlled clinical trial. Circulation114(Suppl. 1) , I101–I107 (2006).
  • StammC, KleineHD, ChoiYHet al.: Intramyocardial delivery of CD133+ bone marrow cells and coronary artery bypass grafting for chronic ischemic heart disease: safety and efficacy studies. J. Thorac. Cardiovasc. Surg.133(3) , 717–725 (2007).
  • AmadoLC, SaliarisAP, SchuleriKHet al.: Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc. Natl Acad. Sci. USA102(32) , 11474–11479 (2005).
  • MoelkerAD, BakasT, WeverKMet al.: Intracoronary delivery of umbilical cord blood derived unrestricted somatic cells is not suitable to improve LV function after myocardial infarction in swine. J. Mol. Cell. Cardiol.42(4) , 735–745 (2007).
  • PerinEC, LopezJ: Methods of stem cell delivery in cardiac diseases. Nat. Clin. Pract. Cardiovasc. Med.3(Suppl. 1) , S110–S113 (2006).
  • IshidaM, TomitaS, NakataniTet al.: Acute effects of direct cell implantation into the heart: a pressure–volume study to analyze cardiac function. J. Heart Lung Transplant.23(7) , 881–888 (2004).
  • GrossmanPM, HanZ, PalasisM, BarryJJ, LedermanRJ: Incomplete retention after direct myocardial injection. Catheter Cardiovasc. Interv.55(3) , 392–397 (2002).
  • QuZ, BalkirL, DeutekomJC, RobbinsPD, PruchnicR, HuardJ: Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol.142(5) , 1257–1267 (1998).
  • HouD, YoussefEA, BrintonTJet al.: Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation112 , I150–I156 (2005).
  • TengC, LuoJ, ChiuCR, Shum-TimD: Massive mechanical loss of microspheres with direct intramyocardial injection in the beating heart: implications for cellular cardiomyoplasty. J. Thorac. Cardiovasc. Surg.132(3) , 628–632 (2006).
  • KindiA, ChenGY, AsenjoJFet al.: Microencapsulation to reduce mechanical loss of microspheres: implications in myocardial cell therapy. Presented at: Canadian Cardiovascular Congress. Quebec City, PQ, Canada, 20–24 October 2007.
  • KindiA, ChenGY, AsenjoJFet al.: Cellular cardiomyoplasty: optimizing cellular dosage and retention by microencapsulation. Presented at: American Heart Association Scientific Sessions. Orlando, FL, USA, 4–7 November 2007.
  • FuY, KedziorekD, OuwerkerkRet al.: Multifunctional perfluorooctylbromide alginate microcapsules for monitoring of mesenchymal stem cell delivery using CT and MRI. Presented at: 12th Annual SCMR Scientific Sessions. Orlando, FL, USA, 29 January–1 February 2009.
  • NygrenJM, JovingeS, BreitbachMet al.: Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med.10(5) , 494–501 (2004).
  • GnecchiM, HeH, LiangODet al.: Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat. Med.11(4) , 367–368 (2005).
  • SuzukiK, MurtuzaB, BeauchampJRet al.: Role of interleukin-1β in acute inflammation and graft death after cell transplantation to the heart. Circulation110(Suppl. 1) , 219–224 (2004).
  • YasudaT, WeiselRD, KianiC, MickleDA, MagantiM, LiRK: Quantitative analysis of survival of transplanted smooth muscle cells with real-time polymerase chain reaction. J. Thorac. Cardiovasc. Surg.129(4) , 904–911 (2005).
  • BittiraB, Shum-TimD, Al-KhaldiA, ChiuRC: Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg.24(3) , 393–398 (2003).
  • JiangW, MaA, WangTet al.: Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflugers Arch.453(1) , 43–52 (2006).
  • SaitoT, KuangJQ, BittiraB, Al-KhaldiA, ChiuRC: Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann. Thorac. Surg.74(1) , 19–24 (2002).
  • YeL, HaiderH, GuoC, SimEK: Cell-based VEGF delivery prevents donor cell apoptosis after transplantation. Ann. Thorac. Surg.83(3) , 1233–1234 (2007).
  • Siti-IsmailN, BishopAE, PolakJM, MantalarisA: The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials29(29) , 3946–3952 (2008).

 Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.