Publication Cover
Xenobiotica
the fate of foreign compounds in biological systems
Volume 43, 2013 - Issue 11
404
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Prediction of human metabolism of the sedative-hypnotic zaleplon using chimeric mice transplanted with human hepatocytes

, , , , , , & show all
Pages 956-962 | Received 22 Jan 2013, Accepted 18 Mar 2013, Published online: 08 May 2013
 

Abstract

1. Human chimeric mice (h-PXB mice) having humanized liver, constructed by transplantation of human hepatocytes, were evaluated as an experimental model for predicting human drug metabolism. Metabolism of zaleplon in h-PXB mice was compared with that in rat chimeric mice (r-PXB mice) constructed by transplantation of rat hepatocytes.

2. Zaleplon is metabolized to 5-oxo-zaleplon by aldehyde oxidase and to desethyl-zaleplon by cytochrome P450 (CYP3A4) in rat and human liver preparations.

3. Liver S9 fraction of h-PXB mice metabolized zaleplon to 5-oxo-zaleplon and desethyl-zaleplon in similar amounts. However, liver S9 fractions of r-PXB and control (urokinase-type plasminogen activator-transgenic severe combined immunodeficient) mice predominantly metabolized zaleplon to desethyl-zaleplon. 5-Oxo-zaleplon was detected as a minor metabolite.

4. Oxidase activity of h-PXB mouse liver cytosol toward zaleplon was about 10-fold higher than that of r-PXB or control mice. In contrast, activities for desethyl-zaleplon formation were similar in liver microsomes from these mice, as well as rat and human liver microsomes.

5. In vivo, the level of 5-oxo-zaleplon in plasma of h-PXB mice was about 7-fold higher than that in r-PXB or control mice, in agreement with the in vitro data. Thus, aldehyde oxidase in h-PXB mice functions as human aldehyde oxidase, both in vivo and in vitro.

6. In contrast, the plasma level of desethyl-zaleplon in r-PXB and control mice was higher than that in h-PXB mice.

7. These results suggest h-PXB mice with humanized liver could be a useful experimental model to predict aldehyde oxidase- and CYP3A4-mediated drug metabolism in humans.

Acknowledgements

The authors thank Dr. Chise Tateno, PhoenixBio Co., Ltd., for supplying chimeric mice.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 897.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.