196
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Increased vascular density is a persistent feature of airway remodeling in a sheep model of chronic asthma

, , , &
Pages 307-315 | Received 20 Mar 2012, Accepted 24 May 2012, Published online: 26 Jun 2012
 

ABSTRACT

Background: Increases in blood vessel density and vascular area are now recognized as important features of remodeled airways in asthma. However, the time sequence for these vascular changes and whether they resolve in the absence of continued antigenic exposure is not well elucidated. The aim of the present study was to correlate progressive changes in airway vascularity with changes in functional airway responses in sheep chronically challenged with house dust mite (HDM) allergen, and to examine the resolution of vascular remodeling following allergen withdrawal. Methods: Progressive changes in vascular indices were examined in four spatially separate lung segments that received weekly challenges with HDM allergen for 0, 8, 16, or 24 weeks. Reversibility of these changes was assessed in a separate experiment in which two lung segments received 24 weeks of HDM challenges and either no rest or 12 weeks rest. Lung tissue was collected from each segment 7 days following the final challenge and vascular changes assessed by a morphometric analysis of airways immunohistochemically stained with an antibody against type IV collagen. Results: Blood vessel density and percent airway vascularity were significantly increased in bronchi following 24 weeks of HDM challenges compared to untreated controls (P < .05), but not at any of the other time-points. There was no significant correlation between vascular indices and airway responses to allergic or nonspecific stimuli. The increase in blood vessel density induced by repeated allergen exposures did not return to baseline levels following a 12-week withdrawal period from allergen. Conclusions: Our results show for the first time that the airways of sheep chronically exposed to HDM allergen undergo vascular remodeling. These findings show the potential of this large animal model for investigating airway angiogenesis in asthma.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.