1,127
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Mechanical characterization of microspheres – capsules, cells and beads: a review

&
Pages 277-285 | Received 14 Nov 2011, Accepted 28 Nov 2011, Published online: 04 Jan 2012
 

Abstract

Microspheres, including microcapsules and cells or beads, are widely used to produce many functional products. Information about their mechanical properties is essential to understanding their performance during manufacturing, processing and end-use applications. The mechanical characterization of microspheres requires applying a mechanical load onto single microspheres and measuring the corresponding deformation, and theoretical modelling of the force–deformation relationship, which allows the determination of mechanical property parameters of the materials such as the elastic modulus, yield stress or failure stress/strain. This review presents the techniques developed for the characterization of microspheres, but focus is on the two most common techniques: atomic force microscopy and compression testing by micromanipulation. The merits and limitations of these techniques and their future developments required are discussed along with the four key aspects to mechanically characterize single microspheres: (i) elastic regime, (ii) plasticity, (iii) rupture behaviour and (iv) time-dependent effects, such as viscoelasticity and permeation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.