1,131
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Mechanical characterization of microspheres – capsules, cells and beads: a review

&
Pages 277-285 | Received 14 Nov 2011, Accepted 28 Nov 2011, Published online: 04 Jan 2012

References

  • Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T. The effects of cell sizes, environmental conditions, and growth phases on the strength of individual W303 yeast cells inside ESEM. IEEE Trans Nanobiosci 2008; 7: 185–93
  • Ahmad MR, Nakajima M, Kojima S, Homma M, Fukuda T. Nanoindentation methods to measure viscoelastic properties of single cells using sharp, flat, and buckling tips inside ESEM. IEEE Trans Nanobiosci 2010; 9: 12–23
  • Arfsten J, Bradtmoller C, Kampen I, Kwade A. Compressive testing of single yeast cells in liquid environment using a nanoindentation system. J Mater Res 2008; 23: 3153–60
  • Briscoe BJ, Liu KK, Williams DR. Adhesive contact deformation of a single microelastomeric sphere. J Colloid Interface Sci 1998; 200: 256–64
  • Bui VC, Kim YU, Choi SS. Physical characteristics of Saccharomyces cerevisiae. Surf Interface Anal 2008; 40: 1323–7
  • Cao G, Chandra N. Evaluation of biological cell properties using dynamic indentation measurement. Phys Rev E: Stat. Nonlinear Soft Matter Phys 2010; 81: 021924
  • Carin M, Barthes-Biesel D, Edwards-Levy F, Postel C, Andrei DC. Compression of biocompatible liquid-filled HSA-alginate capsules: Determination of the membrane mechanical properties. Biotechnol Bioeng 2003; 82: 207–12
  • Carl P, Schillers H. Elasticity measurement of living cells with an atomic force microscope: Data acquisition and processing. Pflugers Arch Eur J Physiol 2008; 457: 551–9
  • Caruso MM, Blaiszik BJ, Jin HH, Schelkopf SR, Stradley DS, Sottos NR, White SR, Moore JS. Robust, double-walled microcapsules for self-healing polymeric materials. ACS Appl Mater Interfaces 2010; 2: 1195–9
  • Cerf A, Cau JC, Vieu C, Dague E. Nanomechanical properties of dead or alive single-patterned bacteria. Langmuir 2009; 25: 5731–6
  • Chen Q, Schonherr H, Vancso GJ. Mechanical properties of block copolymer vesicle membranes by atomic force microscopy. Soft Matter 2009; 5: 4944–50
  • Crick S, Yin F. Assessing micromechanical properties of cells with atomic force microscopy: Importance of the contact point. Biomech Model Mechanobiol 2007; 6: 199–210
  • Cross SE, Jin YS, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2007; 2: 780–3
  • Dague E, Bitar R, Ranchon H, Durand F, Yken HM, Francois JM. An atomic force microscopy analysis of yeast mutants defective in cell wall architecture. Yeast 2010; 27: 673–84
  • Dardelle G, Normand V, Steenhoudt M, Bouquerand PE, Chevalier M, Baumgartner P. Flavour-encapsulation and flavour-release performances of a commercial yeast-based delivery system. Food Hydrocolloids 2007; 21: 953–60
  • Darling EM, Wilusz RE, Bolognesi MP, Zauscher S, Guilak F. Spatial mapping of the biomechanical properties of the pericellular matrix of articular cartilage measured in situ via atomic force microscopy. Biophys J 2010; 98: 2848–56
  • Dintwa E, Jancsok P, Mebatsion HK, Verlinden B, Verboven P, Wang CX, Thomas CR, Tijskens E, Ramon H, NicolaÇ B. A finite element model for mechanical deformation of single tomato suspension cells. J Food Eng 2011; 103: 265–72
  • Dubreuil F, Elsner N, Fery A. Elastic properties of polyelectrolyte capsules studied by atomic-force microscopy and RICM. Eur Phys J E: Soft Matter Biol Phys 2003; 12: 215–21
  • Fery A, Dubreuil F, Mohwald H. Mechanics of artificial microcapsules. New J Phys 2004; 6: Art. 18
  • Fery A, Weinkamer R. Mechanical properties of micro- and nanocapsules: Single-capsule measurements. Polymer 2007; 48: 7221–35
  • Flores-Merino MV, Chirasatitsin S, LoPresti C, Reilly GC, Battaglia G, Engler AJ. Nanoscopic mechanical anisotropy in hydrogel surfaces. Soft Matter 2010; 6: 4466–70
  • Gibbons MM, Klug WS. Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys J 2008; 95: 3640–9
  • Glynos E, Koutsos V, McDicken WN, Moran CM, Pye SD, Ross JA, Sboros V. Nanomechanics of biocompatible hollow thin-shell polymer microspheres. Langmuir 2009a; 25: 7514–22
  • Glynos E, Sboros V, Koutsos V. Polymeric thin shells: Measurement of elastic properties at the nanometer scale using atomic force microscopy. Mater Sci Eng B-Adv Funct Solid-State Mater 2009b; 165: 231–4
  • Hartmann C, Mathmann K, Delgado A. Mechanical stresses in cellular structures under high hydrostatic pressure. Innov Food Sci Emerg Technol 2006; 7: 1–12
  • Hidaka K, Nakamura M, Osuga K, Miyazaki H, Wada S. Elastic characteristics of microspherical embolic agents used for vascular interventional radiology. J Mech Behav Biomed Mater 2010; 3: 497–503
  • Hiratsuka S, Mizutani Y, Tsuchiya M, Kawahara K, Tokumoto H, Okajima T. The number distribution of complex shear modulus of single cells measured by atomic force microscopy. Ultramicroscopy 2009; 109: 937–41
  • Hu JF, Chen HQ, Zhang ZB. Mechanical properties of melamine formaldehyde microcapsules for self-healing materials. Mater Chem Phys 2009; 118: 63–70
  • Ju BF, Ju Y. Video enhanced depth-sensing indentation technique for characterizing mechanical behaviour of biomaterials. Meas Sci Technol 2006; 17: 1776–84
  • Kang I, Panneerselvam D, Panoskaltsis VP, Eppell SJ, Marchant RE, Doerschuk CM. Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-[alpha]. Biophys J 2008; 94: 3273–85
  • Kasas S, Wang X, Hirling H, Marsault R, Huni B, Yersin A, Regazzi R, Grenningloh G, Riederer B, Forro L, et al. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motility Cytoskeleton 2005; 62: 124–32
  • Keller MW, Sottos NR. Mechanical properties of microcapsules used in a self-healing polymer. Exp Mech 2006; 46: 725–33
  • Kim K, Cheng J, Liu Q, Wu XY, Sun Y. Investigation of mechanical properties of soft hydrogel microcapsules in relation to protein delivery using a MEMS force sensor. J Biomed Mater Res Part A 2010; 92A: 103–13
  • Kim BS, Fan TH, Lebedeva OV, Vinogradova OI. Superswollen ultrasoft polyelectrolyte microcapsules. Macromolecules 2005a; 38: 8066–70
  • Kim BS, Lebedeva OV, Koynov K, Gong HF, Glasser G, Lieberwith I, Vinogradova OI. Effect of organic solvent on the permeability and stiffness of polyelectrolyte multilayer microcapsules. Macromolecules 2005b; 38: 5214–22
  • Kim K, Liu XY, Zhang Y, Cheng J, Yu Wu X, Sun Y. Elastic and viscoelastic characterization of microcapsules for drug delivery using a force-feedback MEMS microgripper. Biomed Microdevices 2009; 11: 421–7
  • Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 2002; 26: 239–56
  • Klymenko O, Wiltowska-Zuber J, Lekka M, Kwiatek WM. Energy dissipation in the AFM elasticity measurements. Acta Phys Polonica A 2009; 115: 548–51
  • Kuznetsova TG, Starodubtseva MN, Yegorenkov NI, Chizhik SA, Zhdanov RI. Atomic force microscopy probing of cell elasticity. Micron 2007; 38: 824–33
  • Lanero TS, Cavalleri O, Krol S, Rolandi R, Gliozzi A. Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J Biotechnol 2006; 124: 723–31
  • Lebedeva OV, Kim BS, Vinogradova OI. Mechanical properties of polyelectrolyte-filled multilayer microcapsules studied by atomic force and confocal microscopy. Langmuir 2004; 20: 10685–90
  • Lefebvre Y, Leclerc E, Barthes-Biesel D, Walter J, Edwards-Levy F. Flow of artificial microcapsules in microfluidic channels: A method for determining the elastic properties of the membrane. Phys Fluids 2008; 20(12)123102
  • Leick S, Henning S, Degen P, Suter D, Rehage H. Deformation of liquid-filled calcium alginate capsules in a spinning drop apparatus. Phys Chem Chem Phys 2010; 12: 2950–8
  • Lekka M, Sainz-Serp D, Kulik AJ, Wandrey C. Hydrogel microspheres: Influence of chemical composition on surface morphology, local elastic properties, and bulk mechanical characteristics. Langmuir 2004; 20: 9968–77
  • Lin DC, Dimitriadis EK, Horkay F. Elasticity of rubber-like materials measured by AFM nanoindentation. eXPRESS Polym Lett 2007; 1: 576–84
  • Lin DC, Horkay F. Nanomechanics of polymer gels and biological tissues: A critical review of analytical approaches in the Hertzian regime and beyond. Soft Matter 2008; 4: 669–82
  • Lin DC, Shreiber D, Dimitriadis E, Horkay F. Spherical indentation of soft matter beyond the Hertzian regime: Numerical and experimental validation of hyperelastic models. Biomech Model Mechanobiol 2009; 8: 345–58
  • Lipke PN, Ovalle R. Cell wall architecture in yeast: New structure and new challenges. J Bacteriol 1998; 180: 3735–40
  • Liu KK. Deformation behaviour of soft particles: A review. J Phys D: Appl Phys 2006; 39: R189–99
  • Liu T, Donald AM, Zhang Z. Novel manipulation in environmental scanning electron microscope for measuring mechanical properties of single nanoparticles. Mater Sci Technol 2005; 21: 289–94
  • Liu KK, Williams DR, Briscoe BJ. Compressive deformation of a single microcapsule. Phys Rev E: Stat Nonlinear Soft Matter Phys 1996; 54: 6673
  • Liu T, Zhang Z. Mechanical properties of desiccated ragweed pollen grains determined by micromanipulation and theoretical modelling. Biotechnol Bioeng 2004; 85: 770–5
  • Loh O, Vaziri A, Espinosa H. The potential of MEMS for advancing experiments and modeling in cell mechanics. Exp Mech 2009; 49: 105–24
  • Long Y, York D, Zhang ZB, Preece JA. Microcapsules with low content of formaldehyde: Preparation and characterization. J Mater Chem 2009; 19: 6882–7
  • Loparic M, Wirz D, Daniels AU, Raiteri R, VanLandingham MR, Guex G, Martin I, Aebi U, Stolz M. Micro- and nanomechanical analysis of articular cartilage by indentation-type atomic force microscopy: Validation with a gel-microfiber composite. Biophys J 2010; 98: 2731–40
  • Lulevich VV, Andrienko D, Vinogradova OI. Elasticity of polyelectrolyte multilayer microcapsules. J Chem Phys 2004; 120: 3822–6
  • Lulevich VV, Radtchenko IL, Sukhorukov GB, Vinogradova OI. Deformation properties of nonadhesive polyelectrolyte microcapsules studied with the atomic force microscope. J Phys Chem B 2003; 107: 2735–40
  • Lulevich V, Zink T, Chen HY, Liu FT, Liu GY. Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 2006; 22: 8151–5
  • Mahaffy RE, Park S, Gerde E, Käs J, Shih CK. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 2004; 86: 1777–93
  • Matzke R, Jacobson K, Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nat Cell Biol 2001; 3: 607–10
  • Mercadé-Prieto R, Allen R, York D, Preece JA, Goodwin TE, Zhang Z. Compression of elastic-perfectly plastic microcapsules using micromanipulation and finite element modelling: Determination of the yield stress. Chem Eng Sci 2011a; 66: 1835–43
  • Mercadé-Prieto R, Allen R, York D, Preece JA, Goodwin TE, Zhang Z, Failure of elastic-plastic core-shell microcapsules under compression. AIChEJ, 2011b(in press) DOI: 10.1002/aic.12804
  • Mercadé-Prieto R, Nguyen B, Allen R, York D, Preece JA, Goodwin TE, Zhang Z. Determination of the elastic properties of compressed microcapsules using finite element modelling. Chem Eng Sci 2011c; 66: 2042–9
  • Minc N, Boudaoud A, Chang F. Mechanical forces of fission yeast growth. Curr Biol 2009; 19: 1096–101
  • Moreno-Flores S, Benitez R, Vivanco MD, Toca-Herrera JL. Stress relaxation and creep on living cells with the atomic force microscope: A means to calculate elastic moduli and viscosities of cell components. Nanotechnology 2010a; 21(44): 445101
  • Moreno-Flores S, Benitez R, Vivanco MD, Toca-Herrera JL. Stress relaxation microscopy: Imaging local stress in cells. J Biomech 2010b; 43: 349–54
  • Muller E, Chung JT, Zhang Z, Sprauer A. Characterization of the mechanical properties of polymeric chromatographic particles by micromanipulation. J Chromatogr A 2005; 1097: 116–23
  • Muller DJ, Dufrene YF. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat Nanotechnol 2008; 3: 261–9
  • Nguyen VB, Wang CX, Thomas CR, Zhang Z. Mechanical properties of single alginate microspheres determined by microcompression and finite element modelling. Chem Eng Sci 2009; 64: 821–9
  • O'sullivan M, Zhang ZB, Vincent B. Silica-shell/oil-core microcapsules with controlled shell thickness and their breakage stress. Langmuir 2009; 25: 7962–6
  • Papi M, Sylla L, Parasassi T, Brunelli R, Monaci M, Maulucci G, Missori M, Arcovito G, Ursini F, De Spirito M. Evidence of elastic to plastic transition in the zona pellucida of oocytes using atomic force spectroscopy. Appl Phys Lett 2009; 94: 153902–3
  • Paramera EI, Konteles SJ, Karathanos VT. Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem 2011; 125: 892–902
  • Rachik M, Barthes-Biesel D, Carin M, Edwards-Levy F. Identification of the elastic properties of an artificial capsule membrane with the compression test: Effect of thickness. J Colloid Interface Sci 2006; 301: 217–26
  • Rajagopalan J, Tofangchi A, Saif MTA. Linear high-resolution bioMEMS force sensors with large measurement range. J Microelectromech Syst 2010; 19: 1380–9
  • Ren Y, Donald AM, Zhang Z. Investigation of the morphology, viability and mechanical properties of yeast cells in environmental SEM. Scanning 2008; 30: 435–42
  • Ren YL, Donald AM, Zhang ZB. Investigation of radiation damage to microcapsules in environmental SEM. Mater Sci Technol 2007; 23: 857–64
  • Roduit C, Sekatski S, Dietler G, Catsicas S, Lafont F, Kasas S. Stiffness tomography by atomic force microscopy. Biophys J 2009; 97: 674–7
  • Rosinski S, Grigorescu G, Lewinska D, Ritzen LG, Viernstein H, Teunou E, Poncelet D, Zhang Z, Fan X, Serpy D, et al. Characterization of microcapsules: Recommended methods based on round-robin testing. J Microencapsul 2002; 19: 641–59
  • Rotsch C, Radmacher M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: An atomic force microscopy study. Biophys J 2000; 78: 520–35
  • Sanchez D, Johnson N, Li C, Novak P, Rheinlaender J, Zhang Y, Anand U, Anand P, Gorelik J, Frolenkov GI, et al. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys J 2008; 95: 3017–27
  • Schillers H, Walte M, Urbanova K, Oberleithner H. Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophys J 2010; 99: 3639–46
  • Sheng Y, Briscoe BJ, Maung R, Rovea C. Compression of polymer bound alumina agglomerates at the micro deformation scale. Powder Technol 2004; 140: 228–39
  • Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R. Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm 2008; 349: 83–93
  • Simha NK, Jin H, Hall ML, Chiravarambath S, Lewis JL. Effect of indenter size on elastic modulus of cartilage measured by indentation. J Biomech Eng 2007; 129: 767–75
  • Smith AE, Moxham KE, Middelberg APJ. Wall material properties of yeast cells. Part II. Analysis. Chem Eng Sci 2000a; 55: 2043–53
  • Smith AE, Zhang Z, Thomas CR. Wall material properties of yeast cells: Part 1. Cell measurements and compression experiments. Chem Eng Sci 2000b; 55: 2031–41
  • Smith AE, Zhang ZB, Thomas CR, Moxham KE, Middelberg APJ. The mechanical properties of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2000c; 97: 9871–4
  • Sokolov I, Iyer S, Subba-Rao V, Gaikwad RM, Woodworth CD. Detection of surface brush on biological cells in vitro with atomic force microscopy. Appl Phys Lett 2007; 91: 023902–3
  • Stenson JD, Thomas CR, Hartley P. Modelling the mechanical properties of yeast cells. Chem Eng Sci 2009; 64: 1892–903
  • Stolz M, Gottardi R, Raiteri R, Miot S, Martin I, Imer R, Staufer U, Raducanu A, Duggelin M, Baschong W, et al. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol 2009; 4: 186–92
  • Stolz M, Raiteri R, Daniels AU, VanLandingham MR, Baschong W, Aebi U. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophys J 2004; 86: 3269–83
  • Sun G, Zhang Z. Mechanical properties of melamine-formaldehyde microcapsules. J Microencapsul 2001; 18: 593–602
  • Sun G, Zhang Z. Mechanical strength of microcapsules made of different wall materials. Int J Pharm 2002; 242: 307–11
  • Tan Y, Sun D, Huang W, Cheng SK. Mechanical modeling of biological cells in microinjection. IEEE Trans Nanobiosci 2008; 7: 257–66
  • Tan Y, Sun D, Huang W, Cheng SK. Characterizing mechanical properties of biological cells by microinjection. IEEE Trans Nanobiosci 2010a; 9: 171–180
  • Tan Y, Sun D, Wang J, Cheng SK. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. IEEE Trans Biomed Eng 2010b; 57: 1816–25
  • Tatara Y. On compression of rubber elastic sphere over a large range of displacements. 1. Theoretical study. Trans ASME – J Eng Mater Technol 1991; 113: 285–91
  • Touhami A, Nysten B, Dufrene YF. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 2003; 19: 4539–43
  • Vadillo-Rodriguez V, Dutcher JR. Dynamic viscoelastic behavior of individual gram-negative bacterial cells. Soft Matter 2009; 5: 5012–19
  • Wang CX, Cowen C, Zhang Z, Thomas CR. High-speed compression of single alginate microspheres. Chem Eng Sci 2005; 60: 6649–57
  • Wang CX, Wang L, Thomas CR. Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Botany 2004; 93: 443–53
  • Wright CJ, Shah MK, Powell LC, Armstrong I. Application of AFM from microbial cell to biofilm. Scanning 2010; 32: 134–49
  • Wu HW, Kuhn T, Moy VT. Mechanical properties of L929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking. Scanning 1998; 20: 389–97
  • Xue J, Zhang ZB. Physical, structural, and mechanical characterization of calcium-shellac microspheres as a carrier of carbamide peroxide. J Appl Polym Sci 2009; 113: 1619–25
  • Yan Y, Zhang ZB, Stokes JR, Zhou QZ, Ma GH, Adams MJ. Mechanical characterization of agarose micro-particles with a narrow size distribution. Powder Technol 2009; 192: 122–30
  • Yang JL, Keller MW, Moore JS, White SR, Sottos NR. Microencapsulation of isocyanates for self-healing polymers. Macromolecules 2008; 41: 9650–5
  • Yap SF, Adams MJ, Seville JPK, Zhang ZB. Single and bulk compression of pharmaceutical excipients: Evaluation of mechanical properties. Powder Technol 2008; 185: 1–10
  • Yuan L, Gu A, Liang G. Preparation and properties of poly(urea-formaldehyde) microcapsules filled with epoxy resins. Mater Chem Phys 2008; 110: 417–25
  • Zhang L, D’Acunzi M, Kappl M, Auernhammer GK, Vollmer D, van Kats CM, van Blaaderen A. Hollow silica spheres: Synthesis and mechanical properties. Langmuir 2009a; 25: 2711–17
  • Zhang L, D’Acunzi M, Kappl M, Imhof A, Blaaderen AV, Butt HJ, Graf R, Vollmer D. Tuning the mechanical properties of silica microcapsules. Phys. Chem Chem Phys 2010; 12: 15392–8
  • Zhang Z, Ferenczi MA, Lush AC, Thomas CR. A novel micromanipulation technique for measuring the bursting strength of single mammalian cells. Appl Microbiol Biotechnol 1991; 36: 208–10
  • Zhang Z, Stenson JD, Thomas CR. Micromanipulation in mechanical characterisation of single particles. Advances in chemical engineering, characterization of flow, particles and interfaces, J Li. Academic Press, AmsterdamThe Netherlands 2009b; Ch. 2, 37: 29–85
  • Zhao L, Zhang ZB. Mechanical characterization of biocompatible microspheres and microcapsules by direct compression. Artif Cells Blood Substitutes, Immobilization Biotechnol 2004; 32: 25–40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.