132
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Solid-state stability studies of faropenem based on chromatography, spectroscopy and theoretical analysis

, , &
Pages 136-143 | Received 11 Aug 2012, Accepted 15 Nov 2012, Published online: 28 Jan 2013
 

Abstract

Aim: The purpose of this study was to investigate the stability of faropenem in solid state.

Results: The kinetic and thermodynamic parameters of degradation of faropenem were studied using an RP-HPLC method while the changes of spectral properties were investigated using derivative UV and FT-IR. Quantum-chemical calculations, based on the density functional theory, were carried out to support the estimation of the intra-ring stresses of faropenem and for theoretical interpretation of the spectra. The degradation of faropenem was a first-order reaction depending on the substrate concentration at an increased relative humidity and in dry air. The dependence ln k = f(1/T) became the ln k = (2.03 ± 3.22) × 104–(9761 ± 3052)(1/T) in dry air and ln k = (1.25 ± 0.22) × 105–(9004 ± 3479)(1/T ) at 90.0% RH. The thermodynamic parameters Ea, ΔH≠a, and ΔS≠a of the degradation of faropenem were calculated. The dependence ln k = f(RH%) assumed the form ln k = (7.58 ± 1.88) × 10−2 (RH%) – (5.90 ± 3.90) × 10−8.

Conclusions: Stability studies of faropenem showed that the fusion of β-lactam and thiazolidine rings reduces the intra-ring stress, leading to a lower susceptibility to degradation in dry air and at increased RH.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.