375
Views
9
CrossRef citations to date
0
Altmetric
Research Article

A pre-formulation study of a polymeric solid dispersion of paclitaxel prepared using a quasi-emulsion solvent diffusion method to improve the oral bioavailability in rats

, , , , , & show all
Pages 353-363 | Received 18 Dec 2014, Accepted 20 May 2015, Published online: 10 Jul 2015
 

Abstract

Objective: To preliminarily develop a surfactant-free, polymeric solid dispersion (PSD) of paclitaxel suitable for oral administration.

Methods: A co-solvent quench method was applied to screen the proper polymer matrix of the PSD which were prepared in a liquid system using a quasi-emulsion solvent diffusion method (QESDM). Three dissolution experiments and two in vivo tests in rats were used to explain the differences among the formulations.

Results: The theoretical solubility ratio of amorphous/crystalline PTX was 92.6 (37 °C). Hydroxypropyl methylcellulose acetate succinate (HPMCAS) was chosen as the polymer carrier of the PSD and a porous silicon dioxide [called white carbon black (WCB)] was selectable to be used to further adjust the dissolution rate. The absolute oral bioavailability (AOB, 20 mg/kg) of the three formulas [HPMCAS/paclitaxel/WCB = 4/1/0 (F1), 8/1/0 (F2) and 4/1/4 (F3), w/w/w] were 11.8, 13.6 and 25.6%, respectively. The AOB of F3 is nearly seven times higher than that (3.8%) of paclitaxel material (a control). The advantage of higher HPMCAS/paclitaxel ratio of F2 in a dissolution test was not reflected in the first in vivo test due to the relatively higher dose of polymer which could not be effectively dissolved under the limitation of intestinal environment. This was deduced from the dissolution tests and was finally validated when the oral dose of PTX (and thus polymer) was reduced. The relevant AOBs (10 mg/kg) were 10.4, 20.8 and 19.6%, respectively.

Conclusion: The PSD is a promising formulation strategy and the QESDM is a practical preparation method to implement such formulation design.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article. This work was financially supported by Key Project for Drug Innovation (2009ZX09301-012) from the Ministry of Science and Technology of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.