183
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Formulation parameters and release mechanism of theophylline loaded ethyl cellulose microspheres: effect of different dual surfactant ratios

, , , , , , & show all
Pages 1213-1219 | Received 10 Jul 2011, Accepted 01 Sep 2011, Published online: 12 Oct 2011
 

Abstract

Altering the combined hydrophilic-lipophilic balance (CHLB), by varying the ratio of dual surfactants, on formulation parameters and in vitro drug release of ethyl cellulose microspheres was examined.

Theophylline, a xanthine bronchodilator was used to model controlled release owing to its narrow therapeutic index. Microspheres were prepared using different ratios of dual surfactant in an emulsion-solvent evaporation process. Drug loading, encapsulation efficiency, particle size distribution, and geometric mean diameters were evaluated. Drug release was evaluated using several kinetic models including zero and first order, Higuchi square root, and Hixson-Crowell.

Microspheres presented as mostly spherical particles and diffusional drug release was affected by microsphere construction. For this novel, dual surfactant system the microsphere matrix is a hydrophobic polymer and the release rate may be modulated with variation in ratio of dual surfactants. Dissolution data followed the Higuchi model and supports the formation of a monolithic microsphere matrix that releases theophylline by Fickian diffusion.

Dual surfactants for preparation of microspheres are an inadequately studied research area that offers another means to modulate particle size and drug release. For the current study microspheres prepared with surfactant ratios of Span 65: Tween 40 between 3:1 and 2:1 provided the best control of size and drug release.

Acknowledgments

The authors wish to acknowledge the support of the Alfred P. Sloan Foundation Minority Doctoral Program; the University of Georgia Graduate School, and the Department Pharmaceutical Biomedical Sciences.

Declaration of interest

The authors report no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.