111
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Influence of electronic and formulation variables on transdermal iontophoresis of tacrine hydrochloride

, , &
Pages 442-457 | Received 08 Oct 2013, Accepted 30 Dec 2013, Published online: 27 Jan 2014
 

Abstract

Freshly excised rat skin and side-by-side permeation cells were used to study the effect of electronic and formulation variables on transdermal iontophoretic delivery of tacrine. Current strength at 0.1–0.3 mA was observed to be the driving force resulting in tacrine permation flux of 30.3–366.6 μg/cm2/h. Depot formation of tacrine and altered skin permeability resulted in post iontophoretic flux even after termination of applied current. Increase in the duration of current application did not show significant difference in tacrine permeation flux upto 6 h. Tacrine permeation was directly proportional to tacrine concentration upto 10 mg/ml but further increase in concentration (upto 20 mg/ml) exhibited permeation flux plateau. Buffer molarity had an inverse relationship on permeation flux and the presence of co-ions in formulation exhibited reduced permeation flux. Permeation flux decreased when pH of formulation was successively increased from 7.0 to 10.0 suggesting electromigration of tacrine. Alternate buffer systems including HEPES and Tris showed improved tacrine permeation due to their larger ion size compared to phosphate buffer ions. The results of this study show that transdermal tacrine permeation can be controlled by electronic and formulation variables which would be useful for the development of transdermal iontophoretic delivery of tacrine for the treatment of Alzehimer’s disease.

Declaration of interest

The authors declare no conflict of interest (monetary or otherwise) in conducting this research. The authors alone are responsible for the content and writing of the paper. The authors acknowledge St. John’s University for providing financial assistance and research facilities to carry out this research.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.