149
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Controlled initial surge despite high drug fraction and high solubility

, , , , &
Pages 35-44 | Received 29 Oct 2015, Accepted 14 Dec 2015, Published online: 19 Feb 2016
 

Abstract

Potential connections between release profiles and solvent evaporation rates alongside polymer chemistry were elucidated for the release of tetracycline hydrochloride from two different poly (d, l-lactide-co-glycolide) (PLGA) film matrices containing high drug fractions (50%, 30%, and 15%), and prepared at two distinct solvent evaporation rates. At highest tetracycline concentrations (50%), (i) the early release rates were ≤0.5 μg/min in all cases; (ii) release was linear from systems fabricated with lower lactic content and slower solvent evaporation rate and bimodal from systems fabricated with higher lactic content and faster evaporation rate; (iii) surface fractions covered by the drug were similar at both evaporation rates for 85:15 PLGA but very different for 50:50 PLGA, leading to unexpectedly reduced early release from 50:50 PLGA than from 85:15 PLGA when both the matrices were fabricated using a slower evaporation rate. These features remained unaffected in case of low drug concentration. Results suggested that during the formation of the drug-polymer microstructure, the combined effect of polymer chemistry and solvent evaporation rate sets apart the surface characteristics and the initial release profiles of systems containing high drug fraction, and an appropriate combination of these parameters may be utilized to control the early stage of drug release.

Acknowledgements

The authors thank Ms. Deidra Johnson, our former student intern at FDA, for helping with the initial elution experiments; and Dr. Kenya A. Brothers of the Office of Device Evaluation for valuable discussions at the early stage of the manuscript development.

Declaration of interest

The mention of commercial products, their source, or their use in connection with the material reported herein, is not to be construed either as an actual or implied endorsement by the Department of Health and Human Services.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.