66
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Human mesenchymal stromal cells preserve their stem features better when cultured in the Dulbecco's modified Eagle medium

, , , , , , , & show all
Pages 539-548 | Received 29 Jun 2010, Accepted 12 Nov 2010, Published online: 03 Jan 2011
 

Abstract

Background aims. The human mesenchymal stromal cell (hMSC), a type of adult stem cell with a fibroblast-like appearance, has the potential to differentiate along the mesenchymal lineage and also along other cell lineages. These abilities make hMSC a promising candidate for use in regenerative medicine. As the hMSC represents a very rare population in vivo, in vitro expansion is necessary for any clinical use. hMSC characterization is commonly carried out through the expression of specific markers and by the capability of differentiating toward at least adipo-, osteo- and chondrocytic lineages. Commitment processes also result in significant changes in the ultrastructure in order to acquire new functional abilities; however, few studies have dealt with the ultrastructural characteristics of hMSC according to the time of incubation and type of media. Methods. The immunophenotype, functional characteristics and ultrastructural features of bone marrow (BM) hMSC cultured in two different media were investigated. The media chosen were Iscove's modified Dulbecco's medium (IMDM) and the Dulbecco's modified Eagle medium (DMEM). The latter has been recommended recently by two international transplantation and cytotherapy societies, the International Society of Cellular Therapy (ISCT) and European Group for Blood and Bone Marrow Transplantation (EBMT), for hMSC expansion for clinical applications. Results and Conclusions. The present results indicate that culture conditions greatly influence hMSC ultrastructural features, proliferation, growth and differentiation. In particular, our findings demonstrate that DMEM preserves the hMSC stem features better. Furthermore, the results obtained in IMDM suggest that a small size does not always correlate with conditions of cell immaturity and a greater proliferative potential.

Acknowledgments

This work was supported by funds from the University of Florence, ex quota 60% of MGV.

We wish to thank Mr D. Guasti for his expert technical support with the electron microscopy study.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.