461
Views
291
CrossRef citations to date
0
Altmetric
Reviews

The gizzard: function, influence of diet structure and effects on nutrient availability

Pages 207-224 | Received 29 Oct 2010, Accepted 29 Jan 2011, Published online: 23 Sep 2019

References

  • AKESTER, A.R. (1986) Structure of the glandular layer and koilin membrane in the gizzard of the adult domestic fowl (Gallus gallus domesticus). Journal of Anatomy 147: 1-25.
  • ALMIRALL, M. and ESTEVE-GARCIA, E. (1995) In vitro stability of a ß-glucanase preparation from Trichoderma longibrachiatum and its effect in a barley based diet fed to broiler chicks. Animal Feed Science and Technology 54: 149-158.
  • AMERAH, A.M. and RAVINDRAN, V. (2008) Influence of method of whole-wheat feeding on the performance, digestive tract development and carcass traits of broiler chickens. Animal Feed Science and Technology 147: 326-339.
  • AMERAH, A.M., RAVINDRAN, V. and LENTLE, R.G. (2009a) Influence of wheat hardness and xylanase supplementation on the performance, energy utilisation, digestive tract development and digesta parameters of broiler starters. Animal Production Science 49: 71-78.
  • AMERAH, A.M., RAVINDRAN, V. and LENTLE, R.G. (2009b) Influence of insoluble fibre and whole wheat inclusion on the performance, digestive tract development and ileal microbiota profile of broiler chickens. British Poultry Science 50: 366-375.
  • AMERAH, A.M., RAVINDRAN, V., LENTLE, R.G. and THOMAS, D.G. (2008) Influence of feed particle size on the performance, energy utilisation, digestive tract development, and digesta parameters of broiler starters fed wheat- and corn-based diets. Poultry Science 87: 2320-2328.
  • ANDRYS, R., KLECKER, D., ZEMAN, L. and MARECEK, E. (2003) The effect of changed pH values of feed in isophosphoric diets on chicken broiler performance. Czech Journal of Animal Science 48: 197-206.
  • AO, T., CANTOR, A.H., PESCATORE, A.J. and PIERCE, J.L. (2008) In vitro evaluation of feed-grade enzyme activity at pH levels simulating various parts of the avian digestive tract. Animal Feed Science and Technology 140: 462-468.
  • BALLOUN, S.L. and PHILLIPS, R.E. (1956) Grit feeding affects growth and feed utilization of chicks and egg production of laying hens. Poultry Science 35: 566-569.
  • BANFIELD, M.J. and FORBES, J.M. (2001) Effects of whole wheat dilution v. substitution on coccidiosis in broiler chickens. British Journal of Nutrition 86: 89-95.
  • BEAUNE, D., LE BOHEC, C., LUCAS, F., GAUTHIER-CLERC, M. and LE MAHO, Y. (2009) Stomach stones in king penguin chicks. Polar Biology 32: 593-597.
  • BENNETT, C.D. and CLASSEN, H.L. (2003) Performance of two strains of laying hens fed ground and whole barley with and without access to insoluble grit. Poultry Science 82: 147-149.
  • BENNETT, C.D., CLASSEN, H.L. and RIDDELL, C. (1995) Live performance and health of broiler chickens fed diets diluted with whole or crumbled wheat. Canadian Journal of Animal Science 75: 611-614.
  • BENNETT, C.D., CLASSEN, H.L. and RIDDELL, C. (2002) Feeding broiler chickens wheat and barley diets containing whole, ground and pelleted grain. Canadian Journal of Animal Science 75: 611-614.
  • BIGGS, P. and PARSONS, C.M. (2009) The effects of whole grains on nutrient digestibilities, growth performance, and cecal short-chain fatty acid concentrations in young chicks fed ground corn-soybean meal diets. Poultry Science 88: 1893-1905.
  • BJERRUM, L., PEDERSEN, K. and ENGBERG, R.M. (2005) The influence of whole wheat feeding on salmonella infection and gut flora composition in broilers. Avian Diseases 49: 9-15.
  • BOLTON, W. (1965) Digestion in the crop of the fowl. British Poultry Science 6: 97-102.
  • BOROS, D., MARQUARDT, R.R. and GUENTER, W. (1998) Site of exoenzyme action in gastrointestinal tract of broiler chickens. Canadian Journal of Animal Science 78: 599-602.
  • CARLSON, D. and POULSEN, H.D. (2003) Phytate degradation in soaked and fermented liquid feed - effect of diet, time of soaking, heat treatment, phytase activity, pH and temperature. Animal Feed Science and Technology 103: 141-154.
  • CHAPLIN, S.B., RAVEN, J. and DUKE, G.E. (1992) The influence of the stomach on crop function and feeding behaviour in domestic turkeys. Physiology and Behavior 52: 261-266.
  • CLARK, P.M., BEHNKE, K.C. and FAHRENHOLZ, A.C. (2009) Effects of feeding cracked corn and concentrate protein pellets on broiler growth performance. Journal of Applied Poultry Research 18: 259-268.
  • CLEMENS, E.T., STEVENS, C.E. and SOUTHWORTH, M. (1975) Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of geese. Journal of Nutrition 105: 1341-1350.
  • CLINE, M.A., NANDAR, W., BOWDEN, C., CALCHARY, W., SMITH, M.L., PRALL, B., NEWMYER, B., ROGERS, J.O. and SIEGEL, P.B. (2010) The threshold of amylin-induced anorexia is lower in chicks selected for low compared to high juvenile body weight. Behavioural Brain Research 208: 650-654.
  • DÄNICKE, S., VAHJEN, W., SIMON, O. and JEROCH, H. (1999) Effects of dietary fat type and xylanase supplementation to rye-based broiler diets on selected bacterial groups adhering to the intestinal epithelium, on transit time of feed, and on nutrient digestibility. Poultry Science 78: 1292-1299.
  • DENBOW, D.M. (1994) Peripheral regulation of food intake in poultry. Journal of Nutrition 124: 1349S-1354S.
  • DENBOW, D.M. (2000) Gastrointestinal anatomy and physiology, in: WHITTOW, G.C. (Ed.) Sturkie's avian physiology, pp. 299-325 (New York, Academic Press).
  • DENSTADLI, V., BALLANCE, S., KNUTSEN, S.H., WESTERENG, B. and SVIHUS, B. (2010) Influence of graded levels of brewers' dried grain on pellet quality, performance and gut function in broiler chickens. Poultry Science 89: 2640-2645.
  • DORMITORIO, T.V., GIAMBRONE, J.J. and HOERR, E.J. (2007) Transmissible proventriculitis in broilers. Avian Pathology 36: 87-91.
  • DUKE, G.E. (1986) Alimentary canal: secretion and digestion, special digestive functions, and absorption, in: STURKIE, P.D. (Ed.) Avian Physiology, pp. 289-302 (New York, Springer-Verlag).
  • DUKE, G.E. (1992) Recent studies on regulation of gastric motility in turkeys. Poultry Science 71: 1-8.
  • ENGBERG, R.M., HEDEMANN, M.S. and JENSEN, B.B. (2002) The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens. British Poultry Science 43: 569-579.
  • ENGBERG, R.M., HEDEMANN, M.S., STEENFELDT, S. and JENSEN, B.B. (2004) Influence of Whole Wheat and Xylanase on Broiler Performance and Microbial Composition and Activity in the Digestive Tract. Poultry Science 83: 925-938.
  • EWING, W.R. (1951) Poultry nutrition, fourth edition (Pasadena, USA, W. Ray Ewing publisher).
  • FARNER, D.S. (1960) Digestion and the digestive system, in: MARSHALL, A.J. (Ed.) Biology and comparative physiology of birds, pp. 411-467 (New York, Academic Press).
  • FERRANDO, C., VERGARA, P., JIMÉNEZ, M. and GOÑALONS, E. (1987) Study of the rate of passage of food with chromium-mordanted plant cells in chickens (Gallus gallus). Quarterly Journal of Experimental Physiology 72: 251-259.
  • FRIKHA, M., SAFAA, H.M., SERRANO, M.P., ARBE, X. and MATEOS, G.G. (2009) Influence of the main cereal and feed form of the diet on performance and digestive tract traits of brown-egg laying pullets. Poultry Science 88: 994-1002.
  • GABRIEL, I., MALLET, S. and LECONTE, M. (2003) Differences in the digestive tract characteristics of broiler chickens fed on complete pelleted diet or on whole wheat added to pelleted protein concentrate. British Poultry Science 44: 283-290.
  • GABRIEL, I., MALLET, S., LECONTE, M., TRAVEL, A. and LALLES, J.P. (2008) Effects of whole wheat feeding on the development of the digestive tract of broiler chickens. Animal Feed Science and Technology 142: 144-162.
  • GARIPOGLU, A.V, ERENER, G. and OCAK, N. (2006) Voluntary intake of insoluble granite-grit offered in free choice by broilers: Its effect on their digestive tract traits and performances. Asian-Australian Journal of Animal Science 19: 549-553.
  • GIONFRIDDO, J.P. and BEST, L.B. (1996) Grit-use patterns in North American birds: The influence of diet, body size, and gender. Wilson Bulletin 108: 685-696.
  • GONZALES-ALVARADO, J.M., JIMENEZ-MORENO, E., VALENCIA, D.G., LAZARO, R. and MATEOS, G.G. (2008) Effects of fiber source and heat processing of the cereal on the development and pH of the gastrointestinal tract of broilers fed diets based on corn or rice. Poultry Science 87: 1779-1795.
  • GONZALES-ALVARADO, J.M., JIMENEZ-MORENO, E., VALENCIA, D.G., LAZARO, R. and MATEOS, G.G. (2007) Effects of type of cereal, heat processing of the cereal, and inclusion of fiber in the diet on productive performance and digestive traits of broilers. Poultry Science 86: 1705-1715.
  • GORDON, R.W. and ROLAND, D.A. (1997) The influence of environmental temperature on in vivo limestone solubilization, feed passage rate, and gastrointestinal pH in laying hens. Poultry Science 76: 683-688.
  • GUINOTTE, F. and NYS, Y. (1991) Effects of particle size and origin of calcium sources on eggshell quality and bone mineralization in egg laying hens. Poultry Science 70: 583-592.
  • GUINOTTE, F., GAUTRON, J., NYS, Y. and SOUMARMON, A. (1995) Calcium solubilisation and retention in the gastrointestinal tract in chicks (Gallus domesticus) as a function of gastric acid secretion inhibition and calcium carbonate particle size. British Journal of Nutrition 73: 125-139.
  • HAVENSTEIN, G.B., FERKET, P.R. and QURESHI, M.A. (2003) Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poultry Science 82: 1500-1508.
  • HETLAND, H. and SVIHUS, B. (2001) Effect of oat hulls on performance, gut capacity and feed passage time in broiler chickens. British Poultry Science 42: 354-361.
  • HETLAND, H. and SVIHUS, B. (2007) Inclusion of dust bathing materials affects nutrient digestion and gut physiology of layers. Journal of Applied Poultry Research 16: 22-26.
  • HETLAND, H., SVIHUS, B. and CHOCT, M. (2005) Role of insoluble fiber on gizzard activity in layers. Journal of Applied Poultry Research 14: 38-46.
  • HETLAND, H., SVIHUS, B. and KROGDAHL, Å. (2003) Effects of oat hulls and wood shavings on digestion in broilers and layers fed diets based on whole or ground wheat. British Poultry Science 44: 275-282.
  • HETLAND, H., SVIHUS, B. and OLAISEN, V. (2002) Effect of feeding whole cereals on performance, starch digestibility and duodenal particle size distribution in broiler chickens. British Poultry Science 43: 416-423.
  • HILL, K.J. (1971) The structure of the alimentary tract, in: BELL, D.J. & FREEMAN, B.M. (Eds), Physiology and biochemistry of the domestic fowl, Vol. 1, pp. 1-23 (London, Academic press).
  • HOCKING, P.M. (2006) High-fibre pelleted rations decrease water intake but do not improve physiological indexes of welfare in food-restricted female broiler breeders. British Poultry Science 47: 19-23.
  • HUANG, D.S., LI, D.F., XING, J.J., MA, Y.X., LI, Z.J. and LV, S.Q. (2006) Effects of feed particle size and feed form on survival of Salmonella typhimurium in the alimentary tract and cecal S. typhimurium reduction in growing broilers. Poultry Science 85: 831-836.
  • IBRAHIM, M.A. and EL ZUBEIR, E.A. (1991) Higher fibre sunflower seed meal in broiler chick diets. Animal Feed Science and Technology 33: 343-347.
  • JACKSON, S. and DUKE, G.E. (1995) Intestine fullness influences feeding behaviour and crop filling in the domestic turkey. Physiology and Behavior 58: 1027-1034.
  • JIMENEZ-MORENO, E., GONZALEZ-ALVARADO, J.M., LAZARO, R. and MATEOS, G.G. (2009) Effects of type of cereal, heat processing of the cereal, and fiber inclusion in the diet on gizzard pH and nutrient utilization in broilers at different ages. Poultry Science 88: 1925-1933.
  • JONES, G.P.D. and TAYLOR, R.D. (2001) The incorporation of whole grain into pelleted broiler chicken diets: production and physiological responses. British Poultry Science 42: 477-483.
  • JOZEFIAK, D., RUTKOWSKI, A., JENSEN, B.B. and ENGBERG, R.M. (2007) Effects of dietary inclusion of triticale, rye and wheat and xylanase supplementation on growth performance of broiler chickens and fermentation in the gastrointestinal tract. Animal Feed Science and Technology 132: 79-93.
  • KA, S., LINDBERG, J., STROMSTEDT, L., FITZSIMMONS, C., LINDQVIST, N., LUNDEBERG, J., SIEGEL, P.B., ANDERSSON, L. and HALLBOOK, F. (2009) Extremely Different Behaviours in High and Low Body Weight Lines of Chicken are Associated with Differential Expression of Genes Involved in Neuronal Plasticity. Journal of Neuroendocrinology 21: 208-216.
  • KLASING, K.C. (1998) Comparative avian nutrition. (Wallingford, UK, CAB International).
  • KLASING, K.C. (2005) Poultry nutrition: A comparative approach. Journal of Applied Poultry Research 14: 426-436.
  • KOCH, M., PÄRSCHKE, S. and EDGECOMBE, G.D. (2009) Phylogenetic implications of gizzard morphology in scolopendromorph centipedes (Chilopoda). Zoologica Scripta 38: 269-288.
  • LEESON, S., CASTON, L. and SUMMERS, J.D. (1996) Broiler response to energy or energy and protein dilution in the finisher diet. Poultry Science 75: 522-528.
  • LI, Y. and OWYANG, C. (1993) Vagal afferent pathway mediates physiological action of cholecystokinin on pancreatic-enzyme secretion. Journal of Clinical Investigation 92: 418-424.
  • MAHAGNA, M. and NIR, I. (1996) Comparative development of digestive organs, intestinal disaccharidases and some blood metabolites in broiler and layer-type chicks after hatching. British Poultry Science 37: 359-371.
  • MAHAGNA, M., NIR, I., LARBIER, M. and NITSAN, Z. (1995) Effect of age and exogenous amylase and protease on development of the digestive tract, pancreatic enzyme activities and digestibility of nutrients in young meat-type chicks. Reproduction and Nutrition Development 35: 201-212.
  • MALONE, G.W., CHALOUPKA, G.W. and SAYLOR, W.W. (1983) Influence of litter type and size on broiler performance. 1. Factors affecting litter consumption. Poultry Science 62: 1741-1746.
  • MCLELLAND, J. (1979) Digestive system, in: KING, A.S. & MCLELLAND, J. (Eds) Form and function in birds, pp. 69-182 (London, Academic Press).
  • MOORE, S.J. (1999) Food breakdown in an avian herbivore; who needs teeth? Australian Journal of Zoology 47: 625-632.
  • MURAI, A., SATOH, S., OKUMURA, J.-I. and FURUSE, M. (2000) Factors regulating secretion from chicken pancreatic acini in vitro. Life Science 66: 585-591.
  • NAHAS, J. and LEFRANCOIS, M.R. (2001) Effects of feeding locally grown whole barley with or without enzyme addition and whole wheat on broiler performance and carcass traits. Poultry Science 80: 195-202.
  • NIR, I., HILLEL, R., SHEFET, G. and NITSAN, Z. (1994) Effect of grain particle size on performance. 2. Grain texture interactions. Poultry Science 73: 781-791.
  • NORRIS, E., NORRIS, C. and STEEN, J.B. (1975) Regulation and grinding ability of grit in the gizzard of Norwegian willow ptarmigan (Lagopus lagopus). Poultry Science 54: 1839-1843.
  • O'DELL, B.L., NEWBERNE, P.M. and SAVAGE, J.E. (1959) An abnormality of the proventriculus caused by feed texture. Poultry Science 38: 296-301.
  • O'SULLIVAN, N.P., DUNNINGTON, E.A. and SIEGEL, P.B. (1992) Correlated responses in lines of chickens divergently selected for fifty-six-day body weight. 1. Growth, feed intake, and feed utilization. Poultry Science 71: 590-597.
  • PANIGRAHI., S. and POWELL, C.J. (1991) Effects of high rates of inclusion of palm kernel meal in broiler chick diets. Animal Feed Science and Technology 34: 37-47.
  • PARSONS, A.S., BUCHANAN, N.P., BLEMINGS, K.P., WILSON, M.E. and MORITZ, J.S. (2006) Effect of corn particle size and pellet texture on broiler performance in the growing phase. Journal of Applied Poultry Research 15: 245-255.
  • PARTANEN, K., JALAVA, T. and VALAJA, J. (2007) Effects of a dietary organic acid mixture and of dietary fibre levels on ileal and faecal nutrient apparent digestibility, bacterial nitrogen flow, microbial metabolite concentrations and rate of passage in the digestive tract of pigs. Animal 1: 389-401.
  • PÉRON, A., BASTIANELLI, D., OURY, F.-X., GOMEZ, J. and CARRÉ, B. (2005) Effects of food deprivation and particle size of ground wheat on digestibility of food components in broilers fed on a pelleted diet. British Poultry Science 46: 223-230.
  • PÉRON, A., SVIHUS, B., GABRIEL, I., BÉROT, S., TANGUY, D., BOUCHET, B., GOMEZ, J. and CARRÉ, B. (2007) Effects of two wheat cultivars on physico-chemical properties of wheat flours and digesta from two broiler chicken lines (D+ and D-) differing in digestion capacity. British Poultry Science 48: 370-380.
  • PLAVNIK, I., MACOVSKY, B. and SKLAN, D. (2002) Effect of feeding whole wheat on performance of broiler chickens. Animal Feed Science and Technology 96: 229-236.
  • PRESTON, C.M., MCCRACKEN, K.J. and MCALLISTER, A. (2000) Effect of diet form and enzyme supplementation on growth, efficiency and energy utilisation of wheat-based diets for broilers. British Poultry Science 41: 324-331.
  • RAVINDRAN, V., WU, Y.B., THOMAS, D.G. and MOREL, P.C.H. (2006) Influence of whole wheat feeding on the development of gastrointestinal tract and performance of broiler chickens. Australian Journal of Agricultural Research 57: 21-26.
  • RICHARDS, M.P. and PROSZKOWIEC-WEGLARZ, M. (2007) Mechanisms regulating feed intake, energy Expenditure, and body weight in poultry. Poultry Science 86: 1478-1490.
  • RILEY JR., W.W. and AUSTIC, R.E. (1984) Influence of dietary electrolytes on digestive tract pH and acid-base status of chicks. Poultry Science 63: 2247-2251.
  • RODGERS, N. (2008) Altering broiler gut development, morphology, microbiology and function by manipulating feed grain type, particle size and milling method affects life-long performance. Ph. D. Thesis, University of New England, Australia.
  • ROGEL, A.M., ANNISON, E.F., BRYDEN, W.L. and BALNAVE, D. (1987). The digestion of wheat starch in broiler chickens. Australian Journal of Agricultural Research 38: 639-649.
  • ROUGIERE, N., GOMEZ, J., MIGNON-GRASTEAU, S. and CARRÉ, B. (2009) Effects of diet particle size on digestive parameters in D+ and D- genetic chicken lines selected for divergent digestion efficiency. Poultry Science 88: 1206-1215.
  • SACRANIE, A. (2010) How feed constituents regulate gut motility, feed utilisation and growth in broiler chickens. Ph. D. Thesis, University of New England, Australia.
  • SANTOS, F.B.O., SHELDON, B.W., SANTOS JR., A.A. and FERKET, P.R. (2008) Influence of housing system, grain type, and particle size on Salmonella colonization and shedding of broilers fed triticale or corn-soybean meal diets. Poultry Science 87: 405-420.
  • SCHMITZ, E.H. and BAKER, C.D. (1969) Digestive anatomy of the Gizzard Shad, Dorosoma cepedianum, and the Threadfin Shad, D. petenense. Transactions of the American Microscopical Society 88: 525-546.
  • SCOTT, M.L. and HEUSER, G.F. (1957) The value of grit for chickens and turkeys. Poultry Science 36: 276-283.
  • SENKOYLU, N., SAMLI, H.E., AKYUREK, H., OKUR, A.A. and KANTER, M. (2009) Effects of whole wheat with or without xylanase supplementation on performance of layers and digestive organ development. Italian Journal of Animal Science 8: 155-163.
  • SHAKOURI, M.D., IJI, P.A., MIKKELSEN, L.L. and COWIESON, A.J. (2009) Intestinal function and gut microflora of broiler chickens as influenced by cereal grains and microbial enzyme supplementation. Animal Physiology and animal nutrition 93: 647-658.
  • SHIRES, A., THOMPSON, J.R., TURNER, B.V., KENNEDY, P.M. and GOH, Y.K. (1987) Rate of passage of canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens. Poultry Science 66: 289-298.
  • SIEGEL, P.B. and DUNNINGTON, E.A. (1987) Selection for growth in chickens. CRC Critical Reviews of Poultry Biology 1: 1-24.
  • SIEGEL, P.B., CHERRY, J.A. and DUNNINGTON, E.A. (1984) Feeding behaviour and feed consumption in chickens selected for body weight. Annales Agriculturae Fenniae 23: 247-252.
  • SMULIKOWSKA, S., CZERWINSKI, J., MIECZKOWSKA, A. and JANKOWIAK, J. (2009) The effect of fat-coated organic salts and a feed enzyme on growth performance nutrient utilization, microflora activity, and morphology of the small intestine in broiler chickens. Journal of Animal and Feed Sciences 18: 478-489.
  • STARCK, J.M. (1999) Phenotypic flexibility of the avian gizzard: rapid, reversible and repeated changes of organ size in response to changes in dietary fibre content. The Journal of Experimental Biology 202: 3171-3179.
  • STEENFELDT, S. (2001) The dietary effect of different wheat cultivars for broiler chickens. British Poultry Science 42: 595-609.
  • STEENFELDT, S., KJAER, J.B. and ENGBERG, R.M. (2007) Effect of feeding silages or carrots as supplements to laying hens on production performance, nutrient digestibility, gut structure, gut microflora and feather pecking behaviour. British Poultry Science 48: 454-468.
  • SVIHUS, B. (2006) The role of feed processing on gastrointestinal function and health in poultry, in: PERRY, G.C. (Ed.) Avian gut function in health and disease, Poultry Science Symposium Series vol. 28, (Oxfordshire, UK, CABI publishing).
  • SVIHUS, B., HERSTAD, O., NEWMAN, C.W. and NEWMAN, R.K. (1997) Comparison of performance and intestinal characteristics of broiler chickens fed on diets containing whole, rolled or ground barley. British Poultry Science 38: 524-529.
  • SVIHUS, B. and HETLAND, H. (2001) Ileal starch digestibility in growing broiler chickens fed on a wheat based diet is improved by mash feeding, dilution with cellulose or whole wheat inclusion. British Poultry Science 42: 633-637.
  • SVIHUS, B., JUVIK, E., HETLAND, H. and KROGDAHL, A. (2004a) Causes for improvement in nutritive value of broiler chicken diets with whole wheat instead of ground wheat. British Poultry Science 45: 55-60.
  • SVIHUS, B., HETLAND, H., CHOCT, M. and SUNDBY, F. (2002) Passage rate through the anterior digestive tract of broiler chickens fed on diets with ground or whole wheat. British Poultry Science 43: 662-668.
  • SVIHUS, B., KLØVSTAD, K.H., PEREZ, V., ZIMONJA, O., SAHLSTRÖM, S., SCHULLER, R.B., JEKSRUD, W.K. and PRESTLØKKEN, E. (2004b) Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Animal Feed Science and Technology 117: 281-293.
  • SVIHUS, S., SACRANIE, A., DENSTADLI, V. and CHOCT, M. (2010) Nutrient utilization and functionality of the anterior digestive tract due to intermittent feeding and whole wheat inclusion in diets for broiler chickens. Poultry Science 89: 2617-2625.
  • UDDIN, M.S., ROSE, S.P., HISCOCK, T.A. and BONNET, S. (1996) A comparison of the energy availability for chickens of ground and whole grain samples of two wheat varieties. British Poultry Science 37: 347-357.
  • VAHJEN, W. and SIMON, O. (1999) Biochemical characteristics of non starch polysaccharide hydrolyzing enzyme preparations designed as feed additives for poultry and piglet nutrition. Archives of Animal Nutrition 52: 1-14.
  • VAN DER KLIS, J.D., VERSTEGEN, M.W.A. and DE WIT, W. (1990) Absorption of minerals and retention time of dry matter in the gastrointestinal tract of broilers. Poultry Science 69: 2185-2194.
  • WALDENSTEDT, L., ELWINGER, K., HOOSHMAND-RAD, P., THEBO, P. and UGGLA, A. (1998) Comparison between effects of standard feed and whole wheat supplemented diet on experimental Eimeria tenella and Eimeria maxima infections in broiler chickens. Acta Veterinaera Scandinavica 39: 461-471.
  • WILLIAMS, J., MALLET, S., LECONTE, M., LESSIRE, M. and GABRIEL, I. (2008) The effects of fructo-oligosaccharides or whole wheat on the performance and digestive tract of broiler chickens. British Poultry Science 49: 329-339.
  • WU, Y.B. and RAVINDRAN, V. (2004) Influence of whole wheat inclusion and xylanase supplementation on the performance, digestive tract measurements and carcass characteristics of broiler chickens. Animal Feed Science and Technology 116: 129-139.
  • WU, Y.B., RAVINDRAN, V., THOMAS, D.G., BIRTLES, M.J. and HENDRIKS, W.H. (2004) Influence of method of whole wheat inclusion and xylanase supplementation on the performance, apparent metabolisable energy, digestive tract measurements and gut morphology of broilers. British Poultry Science 45: 385-394.
  • YI, Z. and KORNEGAY, E.T. (1996) Sites of phytase activity in the gastrointestinal tract of young pigs. Animal Feed Science and Technology 61: 361-368.
  • ZHANG, B. and COON, C.N. (1997) The relationship of calcium intake, source, size, solubility in vitro and in vivo, and gizzard limestone retention in laying hens. Poultry Science 76: 1702-1706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.