2,757
Views
28
CrossRef citations to date
0
Altmetric
Reviews

Receptor-binding domains of spike proteins of emerging or re-emerging viruses as targets for development of antiviral vaccines

, , , &
Pages 1-8 | Received 07 Mar 2012, Accepted 12 Mar 2012, Published online: 25 Jan 2019

  • Drosten C, Gunther S, Preiser W et al.Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med2003;348: 1967–1976.
  • Rota PA, Oberste MS, Monroe SS et al.Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science2003;300: 1394–1399.
  • Zhong NS, Zheng BJ, Li YM et al.Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet2003;362:1353–1358.
  • Palese P.Influenza: old and new threats. Nat Med2004;10: S82–S87.
  • Rockx B, Bossart KN, Feldmann F et al.A novel model of lethal Hendra virus infection in African green monkeys and the effectiveness of ribavirin treatment. J Virol2010;84: 9831–9839.
  • Williamson MM, Hooper PT, Selleck PW et al.Transmission studies of Hendra virus (equine morbillivirus) in fruit bats, horses and cats. Aust Vet J1998;76: 813–818.
  • Marshall E, Enserink M.Medicine. Caution urged on SARS vaccines. Science2004;303: 944–946.
  • He YX, Li JJ, Heck S, Lustigman S, Jiang SB.Antigenic and immunogenic characterization of recombinant baculovirus-expressed severe acute respiratory syndrome coronavirus spike protein: implication for vaccine design. J Virol2006;80: 5757–5767.
  • Tseng CT, Sbrana E, Iwata-Yoshikawa N, Newman PC, Garron T, Atmar RL et al.Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS ONE.2012;7: e35421.
  • Weingartl H, Czub M, Czub S et al.Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol2004;78: 12672–12676.
  • He YX, Zhou YS, Liu SW et al.Receptor-binding domain of SARS-CoV spike protein induces highly potent neutralizing antibodies: implication for developing subunit vaccine. Biochem Biophys Res Commun2004;324: 773–781.
  • He YX, Zhu QY, Liu SW et al.Identification of a critical neutralization determinant of severe acute respiratory syndrome (SARS)-associated coronavirus: Importance for designing SARS vaccines. Virology2005;334: 74–82.
  • Du LY, He YX, Wang YJ et al.Recombinant adeno-associated virus expressing the receptor-binding domain of severe acute respiratory syndrome coronavirus S protein elicits neutralizing antibodies: implication for developing SARS vaccines. Virology2006;353: 6–16.
  • He Y, Li J, Li W et al.Cross-neutralization of human and palm civet severe acute respiratory syndrome coronaviruses by antibodies targeting the receptor-binding domain of spike protein. J Immunol2006;176: 6085–6092.
  • Du LY, Zhao GY, Lin YP et al.Intranasal vaccination of recombinant adeno-associated virus encoding receptor-binding domain of severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein induces strong mucosal immune responses and provides long-term protection against SARS-CoV infection. J Immunol2008;180: 948–956.
  • Du L, Zhao G, Lin Y et al.Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine2008;26: 1644–1651.
  • Du L, Zhao G, Chan CC et al.Recombinant receptor-binding domain of SARS-CoV spike protein expressed in mammalian, insect and E. coli cells elicits potent neutralizing antibody and protective immunity. Virology2009;393: 144–150.
  • Du L, He Y, Zhou Y et al.The spike protein of SARS-CoV: a target for vaccine and therapeutic development. Nat Rev Microbiol2009;7: 226–236.
  • Kuiken T, Fouchier RA, Schutten M et al.Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet2003;362: 263–270.
  • Normile D.Infectious diseases—mounting lab accidents raise SARS fears 5. Science2004;304: 659–661.
  • Dimitrov DS.The secret life of ACE2 as a receptor for the SARS virus. Cell2003;115: 652–653.
  • Li WH, Moore MJ, Vasilieva N et al.Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature2003;426: 450–454.
  • Gu J, Korteweg C.Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol2007;170: 1136–1147.
  • Ding YQ, He L, Zhang QL et al.Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol2004;203: 622–630.
  • Peiris JSM, Lai ST, Poon LL et al.Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet2003;361: 1319–1325.
  • Buchholz UJ, Bukreyev A, Yang LJ et al.Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA2004;101: 9804–9809.
  • Zhi Y, Kobinger GP, Jordan H et al.Identification of murine CD8 T cell epitopes in codon-optimized SARS-associated coronavirus spike protein. Virology2005;335: 34–45.
  • Du LY, Kao RY, Zhou YS et al.Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun2007;359: 174–179.
  • Li F, Li WH, Farzan M, Harrison SC.Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science2005;309: 1864–1868.
  • Liu S, Xiao G, Chen Y et al.Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet2004;363: 938–947.
  • Wong SK, Li WH, Moore MJ, Choe H, Farzan M.A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem2004;279: 3197–3201.
  • Xiao X, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS.The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun2003;312: 1159–1164.
  • Jeffers SA, Tusell SM, Gillim-Ross L et al.CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA2004;101: 15748–15753.
  • Han DP, Lohani M, Cho MW.Specific asparagine-linked glycosylation sites are critical for DC-SIGN- and L-SIGN-mediated severe acute respiratory syndrome coronavirus entry. J Virol2007;81: 12029–12039.
  • Bonavia A, Zelus BD, Wentworth DE, Talbot PJ, Holmes KV.Identification of a receptor-binding domain of the spike glycoprotein of human coronavirus HCoV-229E. J Virol2003;77: 2530–2538.
  • Kubo H, Yamada YK, Taguchi F.Localization of neutralizing epitopes and the receptor-binding site within the amino-terminal 330 amino-acids of the murine coronavirus spike protein. J Virol1994;68: 5403–5410.
  • He YX, Zhou YS, Siddiqui P, Jiang SB.Inactivated SARS-CoV vaccine elicits high titers of spike protein-specific antibodies that block receptor binding and virus entry. Biochem Biophys Res Commun2004;325: 445–452.
  • Chen ZW, Zhang LQ, Qin CA et al.Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J Virol2005;79: 2678–2688.
  • Liu J, Stevens DJ, Haire LF et al.Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proc Natl Acad Sci USA2009;106: 17175–17180.
  • Dawood FS, Jain S, Finelli L et al.Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med2009;360: 2605–2615.
  • Peiris M, Yuen KY, Leung CW et al.Human infection with influenza H9N2. Lancet1999;354: 916–917.
  • Fouchier RA, Schneeberger PM, Rozendaal FW et al.Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA2004;101: 1356–1361.
  • Chutinimitkul S, Payungporn S, Chieochansin T et al.The spread of avian influenza H5N1 virus; a pandemic threat to mankind. J Med Assoc Thai2006;89 Suppl 3: S218–S233.
  • Neumann G, Noda T, Kawaoka Y.Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature2009;459: 931–939.
  • Stevens J, Blixt O, Tumpey TM et al.Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science2006;312: 404–410.
  • Rogers GN, Paulson JC, Daniels RS et al.Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature1983;304: 76–78.
  • Prabhu N, Prabakaran M, Ho HT et al.Monoclonal antibodies against the fusion peptide of hemagglutinin protect mice from lethal influenza A virus H5N1 infection 156. J Virol2009;83: 2553–2562.
  • Khurana S, Verma S, Verma N et al.Bacterial HA1 vaccine against pandemic H5N1 influenza virus: evidence of oligomerization, hemagglutination, and cross-protective immunity in ferrets. J Virol2011;85: 1246–1256.
  • Ichinohe T, Ainai A, Tashiro M, Sata T, Hasegawa H.PolyI:polyC12U adjuvant-combined intranasal vaccine protects mice against highly pathogenic H5N1 influenza virus variants. Vaccine2009;27: 6276–6279.
  • Harris K, Ream R, Gao J, Eichelberger MC.Intramuscular immunization of mice with live influenza virus is more immunogenic and offers greater protection than immunization with inactivated virus. Virol J2011;8: 251.
  • Landry N, Ward BJ, Trepanier S et al.Preclinical and clinical development of plant-made virus-like particle vaccine against avian H5N1 influenza. PLoS ONE2010;5: e15559.
  • Xu K, Ling ZY, Sun L et al.Broad humoral and cellular immunity elicited by a bivalent DNA vaccine encoding HA and NP genes from an H5N1 virus. Viral Immunol2011;24: 45–56.
  • Khurana S, Suguitan AL Jr, Rivera Y et al.Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med2009;6: e1000049.
  • Yoshida R, Igarashi M, Ozaki H et al.Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog2009;5: e1000350.
  • Xu R, Ekiert DC, Krause JC et al.Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science2010;328: 357–360.
  • Rudneva IA, Kushch AA, Masalova OV et al.Antigenic epitopes in the hemagglutinin of Qinghai-type influenza H5N1 virus. Viral Immunol2010;23: 181–187.
  • Oh HL, Akerstrom S, Shen S et al.An antibody against a novel and conserved epitope in the hemagglutinin 1 subunit neutralizes numerous H5N1 influenza viruses. J Virol2010;84: 8275–8286.
  • Kaverin NV, Rudneva IA, Govorkova EA et al.Epitope mapping of the hemagglutinin molecule of a highly pathogenic H5N1 influenza virus by using monoclonal antibodies. J Virol2007;81: 12911–12917.
  • Ohshima N, Iba Y, Kubota-Koketsu R et al.Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. J Virol2011;85: 11048–11057.
  • Yamashita A, Kawashita N, Kubota-Koketsu R et al.Highly conserved sequences for human neutralization epitope on hemagglutinin of influenza A viruses H3N2, H1N1 and H5N1: implication for human monoclonal antibody recognition. Biochem Biophys Res Commun2010;393: 614–618.
  • Whittle JR, Zhang R, Khurana S et al.Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA2011;108: 14216–14221.
  • Liu G, Tarbet B, Song L et al.Immunogenicity and efficacy of flagellin-fused vaccine candidates targeting 2009 pandemic H1N1 influenza in mice. PLoS ONE2011;6: e20928.
  • Aguilar-Yanez JM, Portillo-Lara R, Mendoza-Ochoa GI et al.An influenza A/H1N1/2009 hemagglutinin vaccine produced in Escherichia coli. PLoS ONE2010;5: e11694.
  • Du L, Leung VH, Zhang X et al.A recombinant vaccine of H5N1 HA1 fused with foldon and human IgG Fc induced complete cross-clade protection against divergent H5N1 viruses. PLoS ONE2011;6: e16555.
  • Khetawat D, Broder CC.A functional henipavirus envelope glycoprotein pseudotyped lentivirus assay system. Virol J2010;7: 312.
  • Wang L, Harcourt BH, Yu M et al.Molecular biology of Hendra and Nipah viruses. Microbes Infect2001;3: 279–287.
  • Bossart KN, Crameri G, Dimitrov AS et al.Receptor binding, fusion inhibition, and induction of cross-reactive neutralizing antibodies by a soluble G glycoprotein of Hendra virus. J Virol2005;79: 6690–6702.
  • Bishop KA, Stantchev TS, Hickey AC et al.Identification of Hendra virus G glycoprotein residues that are critical for receptor binding. J Virol2007;81: 5893–5901.
  • Bossart KN, Geisbert TW, Feldmann H et al.A neutralizing human monoclonal antibody protects African green monkeys from Hendra virus challenge. Sci Transl Med2011;3: 105ra103.
  • Pallister J, Middleton D, Wang LF et al.A recombinant Hendra virus G glycoprotein-based subunit vaccine protects ferrets from lethal Hendra virus challenge. Vaccine2011;29: 5623–5630.
  • Mungall BA, Middleton D, Crameri G et al.Feline model of acute Nipah virus infection and protection with a soluble glycoprotein-based subunit vaccine. J Virol2006;80: 12293–12302.
  • Zhu Z, Dimitrov AS, Bossart KN et al.Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol2006;80: 891–899.
  • Zhu Z, Bossart KN, Bishop KA et al.Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis2008;197: 846–853.
  • Bonaparte MI, Dimitrov AS, Bossart KN et al.Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proc Natl Acad Sci USA2005;102: 10652–10657.
  • Kondratowicz AS, Lennemann NJ, Sinn PL et al.T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc Natl Acad Sci USA2011;108: 8426–8431.
  • Pileri P, Uematsu Y, Campagnoli S et al.Binding of hepatitis C virus to CD81. Science1998;282: 938–941.
  • Liu S, Yang W, Shen L et al.Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol2009;83: 2011–2014.
  • Scarselli E, Ansuini H, Cerino R et al.The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J2002;21: 5017–5025.
  • Yang ZY, Werner HC, Kong WP et al.Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci USA2005;102: 797–801.
  • Jones IM, Reay PA, Philpott KL.Nuclear location of all three influenza polymerase proteins and a nuclear signal in polymerase PB2. EMBO J1986;5:2371–2376.