453
Views
11
CrossRef citations to date
0
Altmetric
Commentaries

An insight into future antibacterial therapy

Pages 1-3 | Received 28 May 2012, Accepted 17 Sep 2012, Published online: 25 Jan 2019

  • Jabes D. The antibiotic R&D pipeline: an update. Curr Opin Microbiol2011; 14: 564–569.
  • Schultz C, Geerlings S. Plasmid-mediated resistance in Enterobacteriaceae: changing landscape and implications for therapy. Drugs2012; 72: 1–16.
  • Martinez M, Silley P. Antimicrobial drug resistance. Handb Exp Pharmacol2010; 199: 227–264.
  • Zhang Y, Heym B, Allen B et al. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature1992; 358: 591–593.
  • Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, causes resistance to antituberculous drug pyrazinamide in tubercle Bacillus. Nature Medicine1996; 2: 662–667.
  • Goodwin A, Kersulyte D, Sisson G et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol1998; 28: 383–393.
  • Theuretzbacher U. Resistance drives antibacterial drug development. Curr Opin Pharmacol2011; 11: 433–438.
  • Kohanski MA, Dwyer DJ, Collins JJ. How antibiotics kill bacteria: from targets to networks. Nature Rev Microbiol2010; 8: 423–435.
  • Fischbach MA. Combination therapies for combating antimicrobial resistance. Curr Opin Microbiol2011; 14: 519–523.
  • Roemer T, Davies J, Giaever G et al. Bugs, drugs and chemical genomics. Nat Chem Biol2011; 8: 46–56.
  • Bassetti M, Ginocchio F, Mikulska M et al. Will new antimicrobials overcome resistance among Gram-negatives? Expert Rev Anti Infect Ther2011; 9: 909–922.
  • Ma Q, Yu Z, Han B et al. [Research progress in fusion expression of antimicrobial peptides.] Sheng Wu Gong Cheng Xue Bao2011; 27: 1408–1416. Chinese.
  • Pucci MJ. Novel genetic techniques and approaches in the microbial genomics era: identification and/or validation of targets for the discovery of new antibacterial agents. Drugs RD2007; 8: 201–212.
  • Manai M, Cozzone AJ. Analysis of the protein kinase activity of Escherichia coli cells. Biochem Biophys Res Commun1979; 91: 819–826.
  • Wang JH, Koshland DE Jr. Evidence for protein kinase activities in the prokaryote Salmonella typhimurium. J Biol Chem1978; 253: 7605–7608.
  • Pereira SFF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Molec Bio Rev2011; 75: 192–212.
  • Grangeasse C, Cozzone AJ, Deutscher J et al. Tyrosine phosphorylation: an emerging device of bacterial physiology. Trends Biochem Sci2007; 32: 86–94.
  • Mijakovic I, Macek B. Impact of phosphoproteomics on studies of bacterial physiology. FEMS Microbiol Rev2012; 36: 877–892.
  • Lengeler JW, Jahreis K. Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol2009; 16: 65–87.
  • Goulian M. Two-component signaling circuit structure and properties. Curr Opin Microbiol2010; 13: 184–189.
  • Ge R, Shan W. Bacterial phosphoproteomic analysis reveals the correlation between protein phosphorylation and bacterial pathogenicity. Genom Proteom Bioinform2011; 9: 119–127.
  • Scherr N, Honnappa S, Kunz G et al. Structural basis for the specific inhibition of protein kinase G, a virulence factor of Mycobacterium tuberculosis. Proc Natl Acad Sci USA2007; 104: 12151–12156.
  • Grangeasse C, Nessler S, Morera S et al. Inhibitors of bacterial tyrosine kinase and uses thereof. World Intellectual Property Organization. WO/2009/133209A1, 2009
  • Stephenson K, Hoch JA. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol2002; 2: 507–512.
  • Rasko DA, Moreira CG, Li DR et al. Targeting QseC signaling and virulence for antibiotic development. Science2008; 321: 1078–1080.
  • Li N, Wang F, Niu S et al. Discovery of novel inhibitors of Streptococcus pneumoniae based on the virtual screening with the homology-modeled structure of histidine kinase VicK. BMC Microbiol2009; 9: 129–139.
  • Debarbouillé M, Dramsi S, Dussurget O et al. Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus. J Bacteriol2009; 191: 4070–4081.
  • Olivares-Illana V, Meyer P, Bechet E et al. Structural basis for the regulation mechanism of the tyrosine kinase CapB from Staphylococcus aureus. PLoS Biol2008; 6: e143.
  • Lee DC, Zheng J, She YM et al. Structure of Escherichia coli tyrosine kinase Etk reveals a novel activation mechanism. EMBO J2008; 27: 1758–1766.
  • Bechet E, Gruszczyk J, Terreux R et al. Identification of structural and molecular determinants of the tyrosine kinase Wzc and implications in capsular polysaccharide export. Molec Microbiol2010; 77: 1315–1325.