1,739
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Oncogenes and RNA splicing of human tumor viruses

&
Pages 1-16 | Received 23 Sep 2015, Accepted 02 Nov 2015, Published online: 25 Jan 2019

  • de Martel C, Ferlay J, Franceschi S et al.Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol2012;13: 607–615.
  • Rous P.A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J Exp Med1911;13: 397–411.
  • Shope RE, Hurst EW.Infectious papillomatosis of rabbits: with a not on the histopathology. J Exp Med1933;58: 607–624.
  • Bittner JJ.Some possible effects of nursing on the mammary gland tumor incidence in mice. Science1936;84: 162.
  • Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG.Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med1953;84: 570–573.
  • Hilleman MR, Werner JH.Recovery of new agent from patients with acute respiratory illness. Proc Soc Exp Biol Med1954;85: 183–188.
  • Sweet BH, Hilleman MR.The vacuolating virus, S.V. 40. Proc Soc Exp Biol Med1960;105: 420–427.
  • Stehelin D, Varmus HE, Bishop JM, Vogt PK.DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature1976;260: 170–173.
  • Lane DP, Crawford LV.T antigen is bound to a host protein in SV40-transformed cells. Nature1979;278: 261–263.
  • Linzer DI, Levine AJ.Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell1979;17: 43–52.
  • Kovesdi I, Reichel R, Nevins JR.Identification of a cellular transcription factor involved in E1A trans-activation. Cell1986;45: 219–228.
  • Epstein MA, Henle G, Achong BG, Barr YM.Morphological and biological studies on a virus in cultured lymphoblasts from Burkitt's lymphoma. J Exp Med1965;121: 761–770.
  • Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC.Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA1980;77: 7415–7419.
  • Hinuma Y, Nagata K, Hanaoka M et al.Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA1981;78: 6476–6480.
  • Miyoshi I, Kubonishi I, Yoshimoto S et al.Type C virus particles in a cord T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic T cells. Nature1981;294: 770–771.
  • zur Hausen H.Condylomata acuminata and human genital cancer. Cancer Res1976;36: 794.
  • zur Hausen H, Meinhof W, Scheiber W, Bornkamm GW.Attempts to detect virus-secific DNA in human tumors. I. Nucleic acid hybridizations with complementary RNA of human wart virus. Int J Cancer1974;13: 650–656.
  • Durst M, Gissmann L, Ikenberg H, zur Hausen H.A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci USA1983;80: 3812–3815.
  • Boshart M, Gissmann L, Ikenberg H, Kleinheinz A, Scheurlen W, zur Hausen H.A new type of papillomavirus DNA, its presence in genital cancer biopsies and in cell lines derived from cervical cancer. EMBO J1984;3: 1151–1157.
  • Chang Y, Cesarman E, Pessin MS et al.Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science1994;266: 1865–1869.
  • Cesarman E.Gammaherpesviruses and lymphoproliferative disorders. Annu Rev Pathol2014;9: 349–372.
  • Feng H, Shuda M, Chang Y, Moore PS.Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science2008;319: 1096–1100.
  • Howley PM, Lowy DR.Papillomaviruses.In: Knipe DM, Howley PM (ed.) Fields virology.5th ed.Philadelphia, PA: Lippincott Williams & Wilkins, 2007: 2299–2354.
  • Walboomers JM, Jacobs MV, Manos MM et al.Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol1999;189: 12–19.
  • Forman D, de Martel C, Lacey CJ et al.Global burden of human papillomavirus and related diseases. Vaccine2012;30: F12–F23.
  • Munoz N, Bosch FX, de Sanjose S et al.Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med2003;348: 518–527.
  • Ajiro M, Jia R, Zhang L, Liu X, Zheng ZM.Intron definition and a branch site adenosine at nt 385 control RNA splicing of HPV16 E6*I and E7 expression. PLoS ONE2012;7: e46412.
  • Tang S, Tao M, McCoy JP Jr, Zheng ZM.The E7 oncoprotein is translated from spliced E6*I transcripts in high-risk human papillomavirus type 16- or type 18-positive cervical cancer cell lines via translation reinitiation. J Virol2006;80: 4249–4263.
  • Zheng ZM, Baker CC.Papillomavirus genome structure, expression, and post-transcriptional regulation. Front Biosci2006;11: 2286–2302.
  • Kiyono T, Hiraiwa A, Fujita M, Hayashi Y, Akiyama T, Ishibashi M.Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA1997;94: 11612–11616.
  • Lee SS, Weiss RS, Javier RT.Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA1997;94: 6670–6675.
  • Thomas M, Dasgupta J, Zhang Y, Chen X, Banks L.Analysis of specificity determinants in the interactions of different HPV E6 proteins with their PDZ domain-containing substrates. Virology2008;376: 371–378.
  • Zhang Y, Dasgupta J, Ma RZ, Banks L, Thomas M, Chen XS.Structures of a human papillomavirus (HPV) E6 polypeptide bound to MAGUK proteins: mechanisms of targeting tumor suppressors by a high-risk HPV oncoprotein. J Virol2007;81: 3618–3626.
  • Tao M, Kruhlak M, Xia S, Androphy E, Zheng ZM.Signals that dictate nuclear localization of human papillomavirus type 16 oncoprotein E6 in living cells. J Virol2003;77: 13232–13247.
  • Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM.The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell1990;63: 1129–1136.
  • Ansari T, Brimer N, vande Pol SB.Peptide interactions stabilize and restructure human papillomavirus type 16 E6 to interact with p53. J Virol2012;86: 11386–11391.
  • Huibregtse JM, Scheffner M, Howley PM.Localization of the E6-AP regions that direct human papillomavirus E6 binding, association with p53, and ubiquitination of associated proteins. Mol Cell Biol1993;13: 4918–4927.
  • Zanier K, Charbonnier S, Sidi AO et al.Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science2013;339: 694–698.
  • Zanier K, ould M'hamed ould SA, Boulade-Ladame C et al.Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure2012;20: 604–617.
  • Nomine Y, Masson M, Charbonnier S et al.Structural and functional analysis of E6 oncoprotein: insights in the molecular pathways of human papillomavirus-mediated pathogenesis. Mol Cell2006;21: 665–678.
  • Ristriani T, Fournane S, Orfanoudakis G, Trave G, Masson M.A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells. Oncogene2009;28: 762–772.
  • An J, Mo D, Liu H et al.Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell2008;14: 394–407.
  • Patel D, Huang SM, Baglia LA, McCance DJ.The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J1999;18: 5061–5072.
  • Zimmermann H, Degenkolbe R, Bernard HU, O'Connor MJ.The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol1999;73: 6209–6219.
  • Ronco LV, Karpova AY, Vidal M, Howley PM.Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev1998;12: 2061–2072.
  • Gross-Mesilaty S, Reinstein E, Bercovich B et al.Basal and human papillomavirus E6 oncoprotein-induced degradation of Myc proteins by the ubiquitin pathway. Proc Natl Acad Sci USA1998;95: 8058–8063.
  • Veldman T, Liu X, Yuan H, Schlegel R.Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc Natl Acad Sci USA2003;100: 8211–8216.
  • Miller J, Dakic A, Chen R et al.HPV16 E7 protein and hTERT proteins defective for telomere maintenance cooperate to immortalize human keratinocytes. PLoS Pathog2013;9: e1003284.
  • Chen JJ, Reid CE, Band V, Androphy EJ.Interaction of papillomavirus E6 oncoproteins with a putative calcium- binding protein. Science1995;269: 529–531.
  • Gao Q, Srinivasan S, Boyer SN, Wazer DE, Band V.The E6 oncoproteins of high-risk papillomaviruses bind to a novel putative GAP protein, E6TP1, and target it for degradation. Mol Cell Biol1999;19: 733–744.
  • Singh L, Gao Q, Kumar A et al.The high-risk human papillomavirus type 16 E6 counters the GAP function of E6TP1 toward small Rap G proteins. J Virol2003;77: 1614–1620.
  • Filippova M, Song H, Connolly JL, Dermody TS, Duerksen-Hughes PJ.The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) R1 and protects cells from TNF-induced apoptosis. J Biol Chem2002;277: 21730–21739.
  • Topffer S, Muller-Schiffmann A, Matentzoglu K, Scheffner M, Steger G.Protein tyrosine phosphatase H1 is a target of the E6 oncoprotein of high-risk genital human papillomaviruses. J Gen Virol2007;88: 2956–2965.
  • Niebler M, Qian X, Hofler D et al.Post-translational control of IL-1beta via the human papillomavirus type 16 E6 oncoprotein: a novel mechanism of innate immune escape mediated by the E3-ubiquitin ligase E6-AP and p53. PLoS Pathog2013;9: e1003536.
  • Todorovic B, Massimi P, Hung K, Shaw GS, Banks L, Mymryk JS.Systematic analysis of the amino acid residues of human papillomavirus type 16 E7 conserved region 3 involved in dimerization and transformation. J Virol2011;85: 10048–10057.
  • Knapp AA, McManus PM, Bockstall K, Moroianu J.Identification of the nuclear localization and export signals of high risk HPV16 E7 oncoprotein. Virology2009;383: 60–68.
  • Huh K, Zhou X, Hayakawa H et al.Human papillomavirus type 16 E7 oncoprotein associates with the cullin 2 ubiquitin ligase complex, which contributes to degradation of the retinoblastoma tumor suppressor. J Virol2007;81: 9737–9747.
  • Jian Y, Schmidt-Grimminger DC, Chien WM, Wu X, Broker TR, Chow LT.Post-transcriptional induction of p21cip1 protein by human papillomavirus E7 inhibits unscheduled DNA synthesis reactivated in differentiated keratinocytes. Oncogene1998;17: 2027–2038.
  • Noya F, Chien WM, Broker TR, Chow LT.p21cip1 degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7. J Virol2001;75: 6121–6134.
  • Kotake Y, Cao R, Viatour P, Sage J, Zhang Y, Xiong Y.pRB family proteins are required for H3K27 trimethylation and polycomb repression complexes binding to and silencing p16INK4alpha tumor suppressor gene. Genes Dev2007;21: 49–54.
  • Nguyen CL, Eichwald C, Nibert ML, Munger K.Human papillomavirus type 16 E7 oncoprotein associates with the centrosomal component gamma-tubulin. J Virol2007;81: 13533–13543.
  • Baldwin A, Li W, Grace M et al.Kinase requirements in human cells: II. Genetic interaction screens identify kinase requirements following HPV16 E7 expression in cancer cells. Proc Natl Acad Sci USA2008;105: 16478–16483.
  • Bernat A, Avvakumov N, Mymryk JS, Banks L.Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene2003;22: 7871–7881.
  • Avvakumov N, Torchia J, Mymryk JS.Interaction of the HPV E7 proteins with the pCAF acetyltransferase. Oncogene2003;22: 3833–3841.
  • Baldwin A, Huh KW, Munger K.Human papillomavirus E7 oncoprotein dysregulates steroid receptor coactivator 1 localization and function. J Virol2006;80: 6669–6677.
  • DeMasi J, Huh KW, Nakatani Y, Munger K, Howley PM.Bovine papillomavirus E7 transformation function correlates with cellular p600 protein binding. Proc Natl Acad Sci USA2005;102: 11486–11491.
  • Zheng ZM.Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int J Biol Sci2010;6: 730–755.
  • Zheng ZM, Tao M, Yamanegi K, Bodaghi S, Xiao W.Splicing of a cap-proximal human papillomavirus 16 E6E7 intron promotes E7 expression, but can be restrained by distance of the intron from its RNA 5′ cap. J Mol Biol2004;337: 1091–1108.
  • Romfo CM, Alvarez CJ, van Heeckeren WJ, Webb CJ, Wise JA.Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol Cell Biol2000;20: 7955–7970.
  • Shao W, Kim HS, Cao Y, Xu YZ, Query CC.A U1–U2 snRNP interaction network during intron definition. Mol Cell Biol2012;32: 470–478.
  • Pim D, Massimi P, Banks L.Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene1997;15: 257–264.
  • Pim D, Banks L.HPV-18 E6*I protein modulates the E6-directed degradation of p53 by binding to full-length HPV-18 E6. Oncogene1999;18: 7403–7408.
  • Guccione E, Pim D, Banks L.HPV-18 E6*I modulates HPV-18 full-length E6 functions in a cell cycle dependent manner. Int J Cancer2004;110: 928–933.
  • Pim D, Tomaic V, Banks L.The human papillomavirus (HPV) E6* proteins from high-risk, mucosal HPVs can direct degradation of cellular proteins in the absence of full-length E6 protein. J Virol2009;83: 9863–9874.
  • Tang S, Tao M, McCoy JP, Zheng ZM.Short-term induction and long-term suppression of HPV16 oncogene silencing by RNA interference in cervical cancer cells. Oncogene2006;25: 2094–2104.
  • Rosenberger S, de Castro AJ, Langbein L, Steenbergen RD, Rosl F.Alternative splicing of human papillomavirus type-16 E6/E6* early mRNA is coupled to EGF signaling via Erk1/2 activation. Proc Natl Acad Sci USA2010;107: 7006–7011.
  • Kozak M.Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Mol Cell Biol1987;7: 3438–3445.
  • Suprynowicz FA, Krawczyk E, Hebert JD et al.The human papillomavirus type 16 E5 oncoprotein inhibits epidermal growth factor trafficking independently of endosome acidification. J Virol2010;84: 10619–10629.
  • Pim D, Collins M, Banks L.Human papillomavirus type 16 E5 gene stimulates the transforming activity of the epidermal growth factor receptor. Oncogene1992;7: 27–32.
  • Rodriguez MI, Finbow ME, Alonso A.Binding of human papillomavirus 16 E5 to the 16 kDa subunit c (proteolipid) of the vacuolar H+-ATPase can be dissociated from the E5-mediated epidermal growth factor receptor overactivation. Oncogene2000;19: 3727–3732.
  • Straight SW, Hinkle PM, Jewers RJ, McCance DJ.The E5 oncoprotein of human papillomavirus type 16 transforms fibroblasts and effects the downregulation of the epidermal growth factor receptor in keratinocytes. J Virol1993;67: 4521–4532.
  • Bodaghi S, Jia R, Zheng ZM.Human papillomavirus type 16 E2 and E6 are RNA-binding proteins and inhibit in vitro splicing of pre-mRNAs with suboptimal splice sites. Virology2009;386: 32–43.
  • Feng H, Shuda M, Chang Y, Moore PS.Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science2008;319: 1096–1100.
  • Shuda M, Feng H, Kwun HJ et al.T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci USA2008;105: 16272–16277.
  • Chang Y, Moore PS.Merkel cell carcinoma: a virus-induced human cancer. Annu Rev Pathol2012;7: 123–144.
  • Gazdar AF, Butel JS, Carbone M.SV40 and human tumours: myth, association or causality? Nat Rev Cancer2002;2: 957–964.
  • Kwun HJ, Guastafierro A, Shuda M et al.The minimum replication origin of merkel cell polyomavirus has a unique large T-antigen loading architecture and requires small T-antigen expression for optimal replication. J Virol2009;83: 12118–12128.
  • Houben R, Adam C, Baeurle A et al.An intact retinoblastoma protein-binding site in Merkel cell polyomavirus large T antigen is required for promoting growth of Merkel cell carcinoma cells. Int J Cancer2012;130: 847–856.
  • Shuda M, Kwun HJ, Feng H, Chang Y, Moore PS.Human Merkel cell polyomavirus small T antigen is an oncoprotein targeting the 4E-BP1 translation regulator. J Clin Invest2011;121: 3623–3634.
  • Liu X, Hein J, Richardson SC et al.Merkel cell polyomavirus large T antigen disrupts lysosome clustering by translocating human Vam6p from the cytoplasm to the nucleus. J Biol Chem2011;286: 17079–17090.
  • Yu Y, Kudchodkar SB, Alwine JC.Effects of simian virus 40 large and small tumor antigens on mammalian target of rapamycin signaling: small tumor antigen mediates hypophosphorylation of eIF4E-binding protein 1 late in infection. J Virol2005;79: 6882–6889.
  • Kwun HJ, Shuda M, Feng H, Camacho CJ, Moore PS, Chang Y.Merkel cell polyomavirus small T antigen controls viral replication and oncoprotein expression by targeting the cellular ubiquitin ligase SCFFbw7. Cell Host Microbe2013;14: 125–135.
  • Bhatia K, Goedert JJ, Modali R, Preiss L, Ayers LW.Immunological detection of viral large T antigen identifies a subset of Merkel cell carcinoma tumors with higher viral abundance and better clinical outcome. Int J Cancer2010;127: 1493–1496.
  • Houben R, Shuda M, Weinkam R et al.Merkel cell polyomavirus-infected Merkel cell carcinoma cells require expression of viral T antigens. J Virol2010;84: 7064–7072.
  • Henle W, Henle G.Epidemiologic aspects of Epstein–Barr virus (EBV)-associated diseases. Ann NY Acad Sci1980;354: 326–331.
  • Young LS, Rickinson AB.Epstein–Barr virus: 40 years on. Nat Rev Cancer2004;4: 757–768.
  • HENLE G, Henle W, Clifford P et al.Antibodies to Epstein–Barr virus in Burkitt's lymphoma and control groups. J Natl Cancer Inst1969;43: 1147–1157.
  • Arvey A, Tempera I, Tsai K et al.An atlas of the Epstein–Barr virus transcriptome and epigenome reveals host–virus regulatory interactions. Cell Host Microbe2012;12: 233–245.
  • Jones JF, Shurin S, Abramowsky C et al.T-cell lymphomas containing Epstein–Barr viral DNA in patients with chronic Epstein–Barr virus infections. N Engl J Med1988;318: 733–741.
  • Jaffe ES, Krenacs L, Raffeld M.Classification of cytotoxic T-cell and natural killer cell lymphomas. Semin Hematol2003;40: 175–184.
  • Su IJ, Chen JY.The role of Epstein–Barr virus in lymphoid malignancies. Crit Rev Oncol Hematol1997;26: 25–41.
  • Wang D, Liebowitz D, Kieff E.An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell1985;43: 831–840.
  • Dirmeier U, Neuhierl B, Kilger E, Reisbach G, Sandberg ML, Hammerschmidt W.Latent membrane protein 1 is critical for efficient growth transformation of human B cells by Epstein–Barr virus. Cancer Res2003;63: 2982–2989.
  • Lee DY, Sugden B.The LMP1 oncogene of EBV activates PERK and the unfolded protein response to drive its own synthesis. Blood2008;111: 2280–2289.
  • Humme S, Reisbach G, Feederle R et al.The EBV nuclear antigen 1 (EBNA1) enhances B cell immortalization several thousandfold. Proc Natl Acad Sci USA2003;100: 10989–10994.
  • Kang MS, Soni V, Bronson R, Kieff E.Epstein–Barr virus nuclear antigen 1 does not cause lymphoma in C57BL/6J mice. J Virol2008;82: 4180–4183.
  • Decaussin G, Sbih-Lammali F, Turenne-Tessier M, Bouguermouh A, Ooka T.Expression of BARF1 gene encoded by Epstein–Barr virus in nasopharyngeal carcinoma biopsies. Cancer Res2000;60: 5584–5588.
  • Wei MX, Ooka T.A transforming function of the BARF1 gene encoded by Epstein–Barr virus. EMBO J1989;8: 2897–2903.
  • Seto E, Ooka T, Middeldorp J, Takada K.Reconstitution of nasopharyngeal carcinoma-type EBV infection induces tumorigenicity. Cancer Res2008;68: 1030–1036.
  • Sheng W, Decaussin G, Ligout A, Takada K, Ooka T.Malignant transformation of Epstein–Barr virus-negative Akata cells by introduction of the BARF1 gene carried by Epstein–Barr virus. J Virol2003;77: 3859–3865.
  • Danve C, Decaussin G, Busson P, Ooka T.Growth transformation of primary epithelial cells with a NPC-derived Epstein–Barr virus strain. Virology2001;288: 223–235.
  • Fennewald S, van Santen V, Kieff E.Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates that it may encode a membrane protein. J Virol1984;51: 411–419.
  • Renzette N, Somasundaran M, Brewster F et al.Epstein–Barr virus latent membrane protein 1 genetic variability in peripheral blood B cells and oropharyngeal fluids. J Virol2014;88: 3744–3755.
  • Pandya J, Walling DM.Oncogenic activity of Epstein–Barr virus latent membrane protein 1 (LMP-1) is down-regulated by lytic LMP-1. J Virol2006;80: 8038–8046.
  • Kilger E, Kieser A, Baumann M, Hammerschmidt W.Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J1998;17: 1700–1709.
  • Pratt ZL, Zhang J, Sugden B.The latent membrane protein 1 (LMP1) oncogene of Epstein–Barr virus can simultaneously induce and inhibit apoptosis in B cells. J Virol2012;86: 4380–4393.
  • Rowe M, Peng-Pilon M, Huen DS et al.Upregulation of bcl-2 by the Epstein–Barr virus latent membrane protein LMP1: a B-cell-specific response that is delayed relative to NF-kappa B activation and to induction of cell surface markers. J Virol1994;68: 5602–5612.
  • Wang S, Rowe M, Lundgren E.Expression of the Epstein Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines. Cancer Res1996;56: 4610–4613.
  • D'Souza BN, Edelstein LC, Pegman PM et al.Nuclear factor kappa B-dependent activation of the antiapoptotic bfl-1 gene by the Epstein–Barr virus latent membrane protein 1 and activated CD40 receptor. J Virol2004;78: 1800–1816.
  • Fries KL, Miller WE, Raab-Traub N.Epstein–Barr virus latent membrane protein 1 blocks p53-mediated apoptosis through the induction of the A20 gene. J Virol1996;70: 8653–8659.
  • Bentz GL, Bheda-Malge A, Wang L, Shackelford J, Damania B, Pagano JS.KSHV LANA and EBV LMP1 induce the expression of UCH-L1 following viral transformation. Virology2014;448: 293–302.
  • Grimm T, Schneider S, Naschberger E et al.EBV latent membrane protein-1 protects B cells from apoptosis by inhibition of BAX. Blood2005;105: 3263–3269.
  • Tsai SC, Lin SJ, Lin CJ et al.Autocrine CCL3 and CCL4 induced by the oncoprotein LMP1 promote Epstein–Barr virus-triggered B cell proliferation. J Virol2013;87: 9041–9052.
  • Chen CC, Liu HP, Chao M et al.NF-kappaB-mediated transcriptional upregulation of TNFAIP2 by the Epstein–Barr virus oncoprotein, LMP1, promotes cell motility in nasopharyngeal carcinoma. Oncogene2014;33: 3648–3659.
  • Anastasiadou E, Boccellato F, Vincenti S et al.Epstein–Barr virus encoded LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene2010;29: 1316–1328.
  • Yu H, Lu J, Zuo L et al.Epstein–Barr virus downregulates microRNA 203 through the oncoprotein latent membrane protein 1: a contribution to increased tumor incidence in epithelial cells. J Virol2012;86: 3088–3099.
  • Komabayashi Y, Kishibe K, Nagato T, Ueda S, Takahara M, Harabuchi Y.Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma. Am J Hematol2014;89: 25–33.
  • Baer R, Bankier AT, Biggin MD et al.DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature1984;310: 207–211.
  • Hudson GS, Farrell PJ, Barrell BG.Two related but differentially expressed potential membrane proteins encoded by the EcoRI Dhet region of Epstein–Barr virus B95-8. J Virol1985;53: 528–535.
  • Vazirabadi G, Geiger TR, Coffin WF III, Martin JM.Epstein–Barr virus latent membrane protein-1 (LMP-1) and lytic LMP-1 localization in plasma membrane-derived extracellular vesicles and intracellular virions. J Gen Virol2003;84: 1997–2008.
  • Erickson KD, Berger C, Coffin WF, III, Schiff E, Walling DM, Martin JM.Unexpected absence of the Epstein–Barr virus (EBV) lyLMP-1 open reading frame in tumor virus isolates: lack of correlation between Met129 status and EBV strain identity. J Virol2003;77: 4415–4422.
  • Pandya J, Walling DM.Epstein–Barr virus latent membrane protein 1 (LMP-1) half-life in epithelial cells is down-regulated by lytic LMP-1. J Virol2004;78: 8404–8410.
  • Concha M, Wang X, Cao S et al.Identification of new viral genes and transcript isoforms during Epstein–Barr virus reactivation using RNA-Seq. J Virol2012;86: 1458–1467.
  • Wang D, Liebowitz D, Wang F et al.Epstein–Barr virus latent infection membrane protein alters the human B-lymphocyte phenotype: deletion of the amino terminus abolishes activity. J Virol1988;62: 4173–4184.
  • Erickson KD, Martin JM.The late lytic LMP-1 protein of Epstein–Barr virus can negatively regulate LMP-1 signaling. J Virol2000;74: 1057–1060.
  • Verma D, Bais S, Gaillard M, Swaminathan S.Epstein–Barr virus SM protein utilizes cellular splicing factor SRp20 to mediate alternative splicing. J Virol2010;84: 11781–11789.
  • Juillard F, Bazot Q, Mure F et al.Epstein–Barr virus protein EB2 stimulates cytoplasmic mRNA accumulation by counteracting the deleterious effects of SRp20 on viral mRNAs. Nucleic Acids Res2012;40: 6834–6849.
  • Jia R, Li C, McCoy JP, Deng CX, Zheng ZM.SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int J Biol Sci2010;6: 806–826.
  • Cleghorn FR, Manns A, Falk R et al.Effect of human T-lymphotropic virus type I infection on non-Hodgkin's lymphoma incidence. J Natl Cancer Inst1995;87: 1009–1014.
  • Yamaguchi K, Takatsuki K.Adult T cell leukaemia–lymphoma. Baillieres Clin Haematol1993;6: 899–915.
  • Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H.Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood1977;50: 481–492.
  • Takatsuki K.Discovery of adult T-cell leukemia. Retrovirology2005;2: 16.
  • Yoshida M, Miyoshi I, Hinuma Y.Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA1982;79: 2031–2035.
  • Seiki M, Hattori S, Hirayama Y, Yoshida M.Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proc Natl Acad Sci USA1983;80: 3618–3622.
  • Kalyanaraman VS, Narayanan R, Feorino P et al.Isolation and characterization of a human T cell leukemia virus type II from a hemophilia—a patient with pancytopenia. EMBO J1985;4: 1455–1460.
  • Calattini S, Chevalier SA, Duprez R et al.Discovery of a new human T-cell lymphotropic virus (HTLV-3) in Central Africa. Retrovirology2005;2: 30.
  • Wolfe ND, Heneine W, Carr JK et al.Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc Natl Acad Sci USA2005;102: 7994–7999.
  • Grassmann R, Aboud M, Jeang KT.Molecular mechanisms of cellular transformation by HTLV-1 Tax. Oncogene2005;24: 5976–5985.
  • Hasegawa H, Sawa H, Lewis MJ et al.Thymus-derived leukemia–lymphoma in mice transgenic for the Tax gene of human T-lymphotropic virus type I. Nat Med2006;12: 466–472.
  • Cann AJ, Rosenblatt JD, Wachsman W, Shah NP, Chen IS.Identification of the gene responsible for human T-cell leukaemia virus transcriptional regulation. Nature1985;318: 571–574.
  • Felber BK, Paskalis H, Kleinman-Ewing C, Wong-Staal F, Pavlakis GN.The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science1985;229: 675–679.
  • Sodroski J, Rosen C, Wong-Staal F et al.Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science1985;227: 171–173.
  • Nicot C, Harrod RL, Ciminale V, Franchini G.Human T-cell leukemia/lymphoma virus type 1 nonstructural genes and their functions. Oncogene2005;24: 6026–6034.
  • Goren I, Semmes OJ, Jeang KT, Moelling K.The amino terminus of Tax is required for interaction with the cyclic AMP response element binding protein. J Virol1995;69: 5806–5811.
  • Adya N, Giam CZ.Distinct regions in human T-cell lymphotropic virus type I tax mediate interactions with activator protein CREB and basal transcription factors. J Virol1995;69: 1834–1841.
  • Baranger AM, Palmer CR, Hamm MK et al.Mechanism of DNA-binding enhancement by the human T-cell leukaemia virus transactivator Tax. Nature1995;376: 606–608.
  • Kwok RP, Laurance ME, Lundblad JR et al.Control of cAMP-regulated enhancers by the viral transactivator Tax through CREB and the co-activator CBP. Nature1996;380: 642–646.
  • Giebler HA, Loring JE, van Orden K et al.Anchoring of CREB binding protein to the human T-cell leukemia virus type 1 promoter: a molecular mechanism of Tax transactivation. Mol Cell Biol1997;17: 5156–5164.
  • Bex F, Yin MJ, Burny A, Gaynor RB.Differential transcriptional activation by human T-cell leukemia virus type 1 Tax mutants is mediated by distinct interactions with CREB binding protein and p300. Mol Cell Biol1998;18: 2392–2405.
  • Jiang H, Lu H, Schiltz RL et al.PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner. Mol Cell Biol1999;19: 8136–8145.
  • Harrod R, Kuo YL, Tang Y et al.p300 and p300/cAMP-responsive element-binding protein associated factor interact with human T-cell lymphotropic virus type-1 Tax in a multi-histone acetyltransferase/activator-enhancer complex. J Biol Chem2000;275: 11852–11857.
  • Fujii M, Tsuchiya H, Chuhjo T, Akizawa T, Seiki M.Interaction of HTLV-1 Tax1 with p67SRF causes the aberrant induction of cellular immediate early genes through CArG boxes. Genes Dev1992;6: 2066–2076.
  • Fujii M, Tsuchiya H, Chuhjo T, Minamino T, Miyamoto K, Seiki M.Serum response factor has functional roles both in indirect binding to the CArG box and in the transcriptional activation function of human T-cell leukemia virus type I Tax. J Virol1994;68: 7275–7283.
  • Fujii M, Chuhjo T, Minamino T, Masaaki N, Miyamoto K, Seiki M.Identification of the Tax interaction region of serum response factor that mediates the aberrant induction of immediate early genes through CArG boxes by HTLV-I Tax. Oncogene1995;11: 7–14.
  • Ballard DW, Bohnlein E, Lowenthal JW, Wano Y, Franza BR, Greene WC.HTLV-I tax induces cellular proteins that activate the kappa B element in the IL-2 receptor alpha gene. Science1988;241: 1652–1655.
  • Inoue J, Seiki M, Taniguchi T, Tsuru S, Yoshida M.Induction of interleukin 2 receptor gene expression by p40x encoded by human T-cell leukemia virus type 1. EMBO J1986;5: 2883–2888.
  • Maruyama M, Shibuya H, Harada H et al.Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-1-encoded p40x and T3/Ti complex triggering. Cell1987;48: 343–350.
  • Kronke M, Leonard WJ, Depper JM, Greene WC.Deregulation of interleukin-2 receptor gene expression in HTLV-I-induced adult T-cell leukemia. Science1985;228: 1215–1217.
  • Azimi N, Brown K, Bamford RN, Tagaya Y, Siebenlist U, Waldmann TA.Human T cell lymphotropic virus type I Tax protein trans-activates interleukin 15 gene transcription through an NF-kappaB site. Proc Natl Acad Sci USA1998;95: 2452–2457.
  • Mariner JM, Lantz V, Waldmann TA, Azimi N.Human T cell lymphotropic virus type I Tax activates IL-15R alpha gene expression through an NF-kappa B site. J Immunol2001;166: 2602–2609.
  • Pise-Masison CA, Mahieux R, Radonovich M, Jiang H, Brady JN.Human T-lymphotropic virus type I Tax protein utilizes distinct pathways for p53 inhibition that are cell type-dependent. J Biol Chem2001;276: 200–205.
  • Kaida A, Ariumi Y, Ueda Y et al.Functional impairment of p73 and p51, the p53-related proteins, by the human T-cell leukemia virus type 1 Tax oncoprotein. Oncogene2000;19: 827–830.
  • Lemasson I, Nyborg JK.Human T-cell leukemia virus type I tax repression of p73beta is mediated through competition for the C/H1 domain of CBP. J Biol Chem2001;276: 15720–15727.
  • Ma G, Yasunaga J, Fan J, Yanagawa S, Matsuoka M.HTLV-1 bZIP factor dysregulates the Wnt pathways to support proliferation and migration of adult T-cell leukemia cells. Oncogene2013;32: 4222–4230.
  • Mocquet V, Neusiedler J, Rende F et al.The human T-lymphotropic virus type 1 tax protein inhibits nonsense-mediated mRNA decay by interacting with INT6/EIF3E and UPF1. J Virol2012;86: 7530–7543.
  • Kinoshita T, Shimoyama M, Tobinai K et al.Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction. Proc Natl Acad Sci USA1989;86: 5620–5624.
  • Furukawa Y, Osame M, Kubota R, Tara M, Yoshida M.Human T-cell leukemia virus type-1 (HTLV-1) Tax is expressed at the same level in infected cells of HTLV-1-associated myelopathy or tropical spastic paraparesis patients as in asymptomatic carriers but at a lower level in adult T-cell leukemia cells. Blood1995;85: 1865–1870.
  • Ohshima K, Kikuchi M, Masuda Y et al.Defective provirus form of human T-cell leukemia virus type I in adult T-cell leukemia/lymphoma: clinicopathological features. Cancer Res1991;51: 4639–4642.
  • Murata K, Hayashibara T, Sugahara K et al.A novel alternative splicing isoform of human T-cell leukemia virus type 1 bZIP factor (HBZ-SI) targets distinct subnuclear localization. J Virol2006;80: 2495–2505.
  • Taylor JM, Nicot C.HTLV-1 and apoptosis: role in cellular transformation and recent advances in therapeutic approaches. Apoptosis2008;13: 733–747.
  • Russo JJ, Bohenzky RA, Chien MC et al.Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA1996;93: 14862–14867.
  • Wang HW, Trotter MW, Lagos D et al.Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet2004;36: 687–693.
  • Flore O, Rafii S, Ely S, O'Leary JJ, Hyjek EM, Cesarman E.Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. Nature1998;394: 588–592.
  • Lunardi-Iskandar Y, Gill P, Lam VH et al.Isolation and characterization of an immortal neoplastic cell line (KS Y-1) from AIDS-associated Kaposi's sarcoma. J Natl Cancer Inst1995;87: 974–981.
  • Myoung J, Ganem D.Infection of lymphoblastoid cell lines by Kaposi's sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol2011;85: 9767–9777.
  • Sturzl M, Gaus D, Dirks WG, Ganem D, Jochmann R.Kaposi's sarcoma-derived cell line SLK is not of endothelial origin, but is a contaminant from a known renal carcinoma cell line. Int J Cancer2013;132: 1954–1958.
  • Jones T, Ye F, Bedolla R et al.Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV. J Clin Invest2012;122: 1076–1081.
  • Renne R, Zhong W, Herndier B et al.Lytic growth of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med1996;2: 342–346.
  • Cannon JS, Ciufo D, Hawkins AL et al.A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi's sarcoma herpesvirus-containing supernatant. J Virol2000;74: 10187–10193.
  • Rappocciolo G, Hensler HR, Jais M et al.Human herpesvirus 8 infects and replicates in primary cultures of activated B lymphocytes through DC-SIGN. J Virol2008;82: 4793–4806.
  • Myoung J, Ganem D.Active lytic infection of human primary tonsillar B cells by KSHV and its noncytolytic control by activated CD4+ T cells. J Clin Invest2011;121: 1130–1140.
  • Dollery SJ, Santiago-Crespo RJ, Kardava L, Moir S, Berger EA.Efficient infection of a human B cell line with cell-free Kaposi's sarcoma-associated herpesvirus. J Virol2014;88: 1748–1757.
  • Vieira J, O'Hearn PM.Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology2004;325: 225–240.
  • Wang LX, Kang G, Kumar P et al.Humanized-BLT mouse model of Kaposi's sarcoma-associated herpesvirus infection. Proc Natl Acad Sci USA2014;111: 3146–3151.
  • Si H, Robertson ES.Kaposi's sarcoma-associated herpesvirus-encoded latency-associated nuclear antigen induces chromosomal instability through inhibition of p53 function. J Virol2006;80: 697–709.
  • Baresova P, Pitha PM, Lubyova B.Distinct roles of Kaposi's sarcoma-associated herpesvirus-encoded viral interferon regulatory factors in inflammatory response and cancer. J Virol2013;87: 9398–9410.
  • Shamay M, Liu J, Li R et al.A protein array screen for Kaposi's sarcoma-associated herpesvirus LANA interactors links LANA to TIP60, PP2A activity, and telomere shortening. J Virol2012;86: 5179–5191.
  • Godden-Kent D, Talbot SJ, Boshoff C et al.The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates cdk6 to phosphorylate the retinoblastoma protein and histone H1. J Virol1997;71: 4193–4198.
  • Sarek G, Jarviluoma A, Ojala PM.KSHV viral cyclin inactivates p27KIP1 through Ser10 and Thr187 phosphorylation in proliferating primary effusion lymphomas. Blood2006;107: 725–732.
  • Zhi H, Zahoor MA, Shudofsky AM, Giam CZ.KSHV vCyclin counters the senescence/G1 arrest response triggered by NF-kappaB hyperactivation. Oncogene2014 Jan 27.doi:https://doi.org/10.1038/onc.2013.567.E-pub ahead of print.
  • Guasparri I, Keller SA, Cesarman E.KSHV vFLIP is essential for the survival of infected lymphoma cells. J Exp Med2004;199: 993–1003.
  • Wang S, Wang S, Maeng H et al.K1 protein of human herpesvirus 8 suppresses lymphoma cell Fas-mediated apoptosis. Blood2007;109: 2174–2182.
  • Bais C, Van Geelen A, Eroles P et al.Kaposi's sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/KDR. Cancer Cell2003;3: 131–143.
  • Wang Y, Lu X, Zhu L et al.IKK epsilon kinase is crucial for viral G protein-coupled receptor tumorigenesis. Proc Natl Acad Sci USA2013;110: 11139–11144.
  • Tomlinson CC, Damania B.The K1 protein of Kaposi's sarcoma-associated herpesvirus activates the Akt signaling pathway. J Virol2004;78: 1918–1927.
  • Prakash O, Tang ZY, Peng X et al.Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene. J Natl Cancer Inst2002;94: 926–935.
  • Montaner S, Sodhi A, Molinolo A et al.Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell2003;3: 23–36.
  • Sin SH, Dittmer DP.Viral latency locus augments B-cell response in vivo to induce chronic marginal zone enlargement, plasma cell hyperplasia, and lymphoma. Blood2013;121: 2952–2963.
  • Pearce M, Matsumura S, Wilson AC.Transcripts encoding K12, v-FLIP, v-cyclin, and the microRNA cluster of Kaposi's sarcoma-associated herpesvirus originate from a common promoter. J Virol2005;79: 14457–14464.
  • Bieleski L, Talbot SJ.Kaposi's sarcoma-associated herpesvirus vCyclin open reading frame contains an internal ribosome entry site. J Virol2001;75: 1864–1869.
  • Majerciak V, Ni T, Yang W, Meng B, Zhu J, Zheng ZM.A viral genome landscape of RNA polyadenylation from KSHV latent to lytic infection. PLoS Pathog2013;9: e1003749.
  • Cai X, Cullen BR.Transcriptional origin of Kaposi's sarcoma-associated herpesvirus microRNAs. J Virol2006;80: 2234–2242.
  • Yan H, Zhong G, Xu G et al.Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife2012;1: e00049.
  • Nie J, Li J, Sun K et al.HBV/D1: a major HBV subgenotype circulating in Uyghur patients with chronic HBV infection in Xinjiang, China. Arch Virol2012;157: 1541–1549.
  • Inui A, Komatsu H, Sogo T, Nagai T, Abe K, Fujisawa T.Hepatitis B virus genotypes in children and adolescents in Japan: before and after immunization for the prevention of mother to infant transmission of hepatitis B virus. J Med Virol2007;79: 670–675.
  • Coursaget P, Yvonnet B, Chotard J et al.Age- and sex-related study of hepatitis B virus chronic carrier state in infants from an endemic area (Senegal). J Med Virol1987;22: 1–5.
  • Benhenda S, Ducroux A, Riviere L et al.Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol2013;87: 4360–4371.
  • Lucito R, Schneider RJ.Hepatitis B virus X protein activates transcription factor NF-kappa B without a requirement for protein kinase C. J Virol1992;66: 983–991.
  • Lian Z, Liu J, Wu M et al.Hepatitis B x antigen up-regulates vascular endothelial growth factor receptor 3 in hepatocarcinogenesis. Hepatology2007;45: 1390–1399.
  • Arzumanyan A, Friedman T, Ng IO, Clayton MM, Lian Z, Feitelson MA.Does the hepatitis B antigen HBx promote the appearance of liver cancer stem cells? Cancer Res2011;71: 3701–3708.
  • Lu JW, Yang WY, Lin YM, Jin SL, Yuh CH.Hepatitis B virus X antigen and aflatoxin B1 synergistically cause hepatitis, steatosis and liver hyperplasia in transgenic zebrafish. Acta Histochem2013;115: 728–739.
  • Galibert F, Mandart E, Fitoussi F, Tiollais P, Charnay P.Nucleotide sequence of the hepatitis B virus genome (subtype ayw) cloned in E. coli. Nature1979;281: 646–650.
  • Antonucci TK, Rutter WJ.Hepatitis B virus (HBV) promoters are regulated by the HBV enhancer in a tissue-specific manner. J Virol1989;63: 579–583.
  • Zheng Y, Li J, Ou JH.Regulation of hepatitis B virus core promoter by transcription factors HNF1 and HNF4 and the viral X protein. J Virol2004;78: 6908–6914.
  • Sommer G, Heise T.Posttranscriptional control of HBV gene expression. Front Biosci2008;13: 5533–5547.
  • Schwalbe M, Ohlenschlager O, Marchanka A et al.Solution structure of stem-loop alpha of the hepatitis B virus post-transcriptional regulatory element. Nucleic Acids Res2008;36: 1681–1689.
  • Huang C, Xie MH, Liu W et al.A structured RNA in hepatitis B virus post-transcriptional regulatory element represses alternative splicing in a sequence-independent and position-dependent manner. FEBS J2011;278: 1533–1546.
  • Chowdhury JB, Roy D, Ghosh S.Identification of a unique splicing regulatory cluster in hepatitis B virus pregenomic RNA. FEBS Lett2011;585: 3348–3353.
  • Heise T, Sommer G, Reumann K, Meyer I, Will H, Schaal H.The hepatitis B virus PRE contains a splicing regulatory element. Nucleic Acids Res2006;34: 353–363.
  • Soussan P, Garreau F, Zylberberg H, Ferray C, Brechot C, Kremsdorf D.In vivo expression of a new hepatitis B virus protein encoded by a spliced RNA. J Clin Invest2000;105: 55–60.
  • Bayliss J, Lim L, Thompson AJ et al.Hepatitis B virus splicing is enhanced prior to development of hepatocellular carcinoma. J Hepatol2013;59: 1022–1028.
  • Soussan P, Tuveri R, Nalpas B et al.The expression of hepatitis B spliced protein (HBSP) encoded by a spliced hepatitis B virus RNA is associated with viral replication and liver fibrosis. J Hepatol2003;38: 343–348.
  • Chen WN, Chen JY, Lin WS, Lin JY, Lin X.Hepatitis B doubly spliced protein, generated by a 2.2 kb doubly spliced hepatitis B virus RNA, is a pleiotropic activator protein mediating its effects via activator protein-1- and CCAAT/enhancer-binding protein-binding sites. J Gen Virol2010;91: 2592–2600.
  • Chen WN, Chen JY, Jiao BY et al.Interaction of the hepatitis B spliced protein with cathepsin B promotes hepatoma cell migration and invasion. J Virol2012;86: 13533–13541.
  • Mancini-Bourgine M, Bayard F, Soussan P et al.Hepatitis B virus splice-generated protein induces T-cell responses in HLA-transgenic mice and hepatitis B virus-infected patients. J Virol2007;81: 4963–4972.
  • Ma ZM, Lin X, Wang YX, Tian XC, Xie YH, Wen YM.A double-spliced defective hepatitis B virus genome derived from hepatocellular carcinoma tissue enhanced replication of full-length virus. J Med Virol2009;81: 230–237.
  • Huang HL, Jeng KS, Hu CP, Tsai CH, Lo SJ, Chang C.Identification and characterization of a structural protein of hepatitis B virus: a polymerase and surface fusion protein encoded by a spliced RNA. Virology2000;275: 398–410.
  • Park GS, Kim HY, Shin HS, Park S, Shin HJ, Kim K.Modulation of hepatitis B virus replication by expression of polymerase-surface fusion protein through splicing: implications for viral persistence. Virus Res2008;136: 166–174.
  • Garcia-Sastre A, Evans MJ.miR-122 is more than a shield for the hepatitis C virus genome. Proc Natl Acad Sci USA2013;110: 1571–1572.
  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P.Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science2005;309: 1577–1581.
  • Steinmann E, Pietschmann T.Cell culture systems for hepatitis C virus. Curr Top Microbiol Immunol2013;369: 17–48.
  • Wakita T, Pietschmann T, Kato T et al.Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med2005;11: 791–796.
  • Zhong J, Gastaminza P, Cheng G et al.Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci USA2005;102: 9294–9299.
  • Levrero M.Viral hepatitis and liver cancer: the case of hepatitis C. Oncogene2006;25: 3834–3847.
  • Banerjee A, Ray RB, Ray R.Oncogenic potential of hepatitis C virus proteins. Viruses2010;2: 2108–2133.
  • Akkari L, Gregoire D, Floc'h N et al.Hepatitis C viral protein NS5A induces EMT and participates in oncogenic transformation of primary hepatocyte precursors. J Hepatol2012;57: 1021–1028.
  • Kowdley KV, Gordon SC, Reddy KR et al.Ledipasvir and sofosbuvir for 8 or 12 weeks for chronic HCV without cirrhosis. N Engl J Med2014;370: 1879–1888.
  • Gane EJ, Stedman CA, Hyland RH et al.Efficacy of nucleotide polymerase inhibitor sofosbuvir plus the NS5A Inhibitor ledipasvir or the NS5B non-nucleoside inhibitor GS-9669 against HCV genotype 1 infection. Gastroenterology2014;146: 736–743.
  • Lawitz E, Poordad FF, Pang PS et al.Sofosbuvir and ledipasvir fixed-dose combination with and without ribavirin in treatment-naive and previously treated patients with genotype 1 hepatitis C virus infection (LONESTAR): an open-label, randomised, phase 2 trial. Lancet2014;383: 515–523.