2,046
Views
71
CrossRef citations to date
0
Altmetric
Original Articles

Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates

, , , , , , , , , , , , , , , , & show all
Pages 1-9 | Received 02 Dec 2014, Accepted 19 May 2015, Published online: 25 Jan 2019

  • World Health Organization. Global Tuberculosis Report 2014.Geneva: WHO, 2014.Available at http://apps.who.int/iris/bitstream/10665/137094/1/9789241564809_eng.pdf (accessed 1 November 2014).
  • World Health Organization.Global Tuberculosis Report 2013.Geneva: WHO, 2013.Available at http://www.who.int/tb/publications/global_report/en/ (accessed 3 July 2013).
  • Boehme CC, Nabeta P, Hillemann D et al.Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 2010; 363: 1005–1015.
  • Ferro BE, García PK, Nieto LM, van Soolingen D.Predictive value of molecular drug resistance testing of Mycobacterium tuberculosis isolates in Valle del Cauca, Colombia. J Clin Microbiol 2013; 51: 2220–2224.
  • Jacobson KR, Theron D, Victor TC, Streicher EM, Warren RM, Murray MB.Treatment outcomes of isoniazid-resistant tuberculosis patients, Western Cape Province, South Africa. Clin Infect Dis 2011; 53: 369–372.
  • Varahram M, Nasiri MJ, Farnia P, Mozafari M, Velayati AA.A retrospective analysis of isoniazid-monoresistant tuberculosis: among Iranian pulmonary tuberculosis patients. Open Microbiol J 2013; 8: 1–5.
  • Gagneux S, Burgos M V, DeRiemer K et al.Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog 2006; 2: e61.
  • Yu S, Girotto S, Lee C, Magliozzo RS.Reduced affinity for Isoniazid in the S315T mutant of Mycobacterium tuberculosis KatG is a key factor in antibiotic resistance. J Biol Chem 2003; 278: 14769–14775.
  • Pym AS, Saint-Joanis B, Cole ST.Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun 2002; 70: 4955–4960.
  • Guo H, Seet Q, Denkin S, Parsons L, Zhang Y.Molecular characterization of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from the USA. J Med Microbiol 2006; 55: 1527–1531.
  • Larsen MH, Vilchèze C, Kremer L et al.Overexpression of inhA, but not kasA, confers resistance to isoniazid and ethionamide in Mycobacterium smegmatis, M. bovis BCG and M. tuberculosis. Mol Microbiol 2002; 46: 453–466.
  • Rodwell TC, Valafar F, Douglas J et al.Predicting extensively drug-resistant Mycobacterium tuberculosis phenotypes with genetic mutations. J Clin Microbiol 2014; 52: 781–789.
  • Wei C-J, Lei B, Musser JM, Tu S-C.Isoniazid activation defects in recombinant Mycobacterium tuberculosis catalase-peroxidase (KatG) mutants evident in InhA inhibitor production. Antimicrob Agents Chemother 2003; 47: 670–675.
  • Siqueira HR, Freitas FA, Oliveira DN, Barreto AM, Dalcolmo MP, Albano RM.Isoniazid-resistant Mycobacterium tuberculosis strains arising from mutations in two different regions of the katG gene. J Bras Pneumol 2009; 35: 773–779.
  • Ramaswamy SV, Reich R, Dou SJ et al.Single nucleotide polymorphisms in genes associated with isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2003; 47: 1241–1250.
  • Ando H, Miyoshi-Akiyama T, Watanabe S, Kirikae T.A silent mutation in mabA confers isoniazid resistance on Mycobacterium tuberculosis. Mol Microbiol 2014; 91: 538–547.
  • Hillery N, Groessl EJ, Trollip A et al.The Global Consortium for Drug-resistant Tuberculosis Diagnostics (GCDD): design of a multi-site, head-to-head study of three rapid tests to detect extensively drug-resistant tuberculosis. Trials 2014; 15: 434.
  • Canetti G, Fox W, Khomenko A et al.Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 1969; 41: 21–43.
  • Garfein RS, Catanzaro DG, Rodwell TC et al.Phenotypic and genotypic diversity in a multinational sample of drug-resistant Mycobacterium Tuberculosis isolates. Int J Tuberc Lung Dis 2015; 19: 420–427.
  • Kamerbeek J, Schouls L, Kolk A et al.Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 1997; 35: 907–914.
  • Cowan LS, Diem L, Monson T et al.Evaluation of a two-step approach for large-scale, prospective genotyping of Mycobacterium tuberculosis isolates in the United States. J Clin Microbiol 2005; 43: 688–695.
  • Mazars E, Lesjean S, Banuls AL et al.High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A 2001; 98: 1901–1906.
  • Shabbeer A, Cowan LS, Ozcaglar C et al.TB-Lineage: an online tool for classification and analysis of strains of Mycobacterium tuberculosis complex. Infect Genet Evol 2012; 12: 789–797.
  • Aminian M, Couvin D, Shabbeer A et al.Predicting Mycobacterium tuberculosis complex clades using knowledge-based Bayesian networks. Biomed Res Int 2014; 2014: 398484.
  • Ajbani K, Lin SY, Rodrigues C et al.Evaluation of Pyrosequencing for Detecting Extensively Drug-resistant Tuberculosis (XDR-TB) in clinical isolates from four high-burden countries. Antimicrob Agents Chemother 2015; 59: 414–420.
  • Van Helden PD, Victor TC, Warren RM, van Helden EG.Isolation of DNA from Mycobacterium tubercolosis. Methods Mol Med 2001; 54: 19–30.
  • QIAGEN. QIAGEN Genomic DNA Handbook 04/2012.Hilden: QIAGEN Technical Support, 2012.
  • Van der Auwera GA, Carneiro MO, Hartl C et al.From FastQ data to high-confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatis 2013; 11: 11.10.1–11.10.33.
  • McKenna A, Hanna M, Banks E et al.The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.
  • DePristo MA, Banks E, Poplin R et al.A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.
  • Li H, Handsaker B, Wysoker A et al.The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.
  • Barnett DW, Garrison EK, Quinlan AR, Strömberg MP, Marth GT.BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 2011; 27: 1691–1692.
  • Koboldt DC, Chen K, Wylie T et al.VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009; 25: 2283–2285.
  • Koboldt DC, Zhang Q, Larson DE et al.VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012; 22: 568–576.
  • Lin SY, Rodwell TC, Victor TC et al.Pyrosequencing for rapid detection of extensively drug-resistant Mycobacterium tuberculosis in clinical isolates and clinical specimens. J Clin Microbiol 2014; 52: 475–482.
  • Borrell S, Teo Y, Giardina F et al.Epistasis between antibiotic resistance mutations drives the evolution of extensively drug-resistant tuberculosis. Evol Med public Heal 2013; 2013: 65–74.
  • Koch A, Mizrahi V, Warner DF.The impact of drug resistance on Mycobacterium tuberculosis physiology: what can we learn from rifampicin? Emerg Microbes Infect 2014; 3: e17.
  • Xu X, Vilchèze C, Av-Gay Y, Gómez-Velasco A, Jacobs WR.Precise null deletion mutations of the mycothiol synthesis genes reveal their role in isoniazid and ethionamide resistance in Mycobacterium smegmatis. Antimicrob Agents Chemother 2011; 55: 3133–3139.
  • Zhang Y, Heym B, Allen B, Young D, Cole S.The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992; 358: 591–593.
  • Shcherbakov D, Akbergenov R, Matt T, Sander P, Andersson DI, Böttger EC.Directed mutagenesis of Mycobacterium smegmatis 16S rRNA to reconstruct the in-vivo evolution of aminoglycoside resistance in Mycobacterium tuberculosis. Mol Microbiol 2010; 77: 830–840.
  • Parish T, Roberts G, Laval F, Schaeffer M, Daffé M, Duncan K.Functional complementation of the essential gene fabG1 of Mycobacterium tuberculosis by Mycobacterium smegmatis fabG but not Escherichia coli fabG. J Bacteriol 2007; 189: 3721–3728.
  • Burian J, Yim G, Hsing M et al.The mycobacterial antibiotic resistance determinant WhiB7 acts as a transcriptional activator by binding the primary sigma factor SigA (RpoV). Nucleic Acids Res 2013; 41: 10062–10076.
  • Karunakaran P, Davies J.Genetic antagonism and hypermutability in Mycobacterium smegmatis. J Bacteriol 2000; 182: 3331–3335.
  • Johnson R, Streicher EM, Louw GE, Warren RM, van Helden PD, Victor TC.Drug resistance in Mycobacterium tuberculosis. Curr Issues Mol Biol 2006; 8: 97–111.
  • Parish T, Stoker NG.Use of flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 2000; 146: 1969–1975.
  • Thermo Scientific.Phusion Polymerase.Waltham, MA: Thermo Scientific, 2014.Available at http://www.thermoscientificbio.com/pcr-enzymes-master-mixes-and-reagents/phusion-high-fidelity-dna-polymerase/ (accessed 1 May 2014).
  • Edelheit O, Hanukoglu A, Hanukoglu I.Simple and efficient site-directed mutagenesis using two single-primer reactions in parallel to generate mutants for protein structure-function studies. BMC Biotechnol 2009; 9: 61.
  • Chan RC, Hui M, Chan EWC et al.Genetic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates in Hong Kong. J Antimicrob Chemother 2007; 59: 866–873.
  • Heym B, Alzari PM, Honore N, Cole ST.Missense mutations in the catalase-peroxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995; 15: 235–245.
  • Hillemann D, Weizenegger M, Kubica T, Richter E, Niemann S.Use of the genotype MTBDR assay for rapid detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis complex isolates. J Clin Microbiol 2005; 43: 3699–3703.
  • Choi JH, Lee KW, Kang HR et al.Clinical efficacy of direct DNA sequencing analysis on sputum specimens for early detection of drug-resistant Mycobacterium tuberculosis in a clinical setting. Chest 2010; 137: 393–400.
  • Jagielski T, Grzeszczuk M, Kamiński M et al.Identification and analysis of mutations in the katG gene in multidrug-resistant Mycobacterium tuberculosis clinical isolates. Pneumonol Alergol Pol 2013; 81: 298–307.
  • Zaker Bostanabad S, Titov LP, Slizen VV, Taghikhani M, Bahrmand A.katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis isolates from Belarusian patients. Tuberk Toraks 2007; 55: 231–237.
  • Rouse DA, Li Z, Bai GH, Morris SL.Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995; 39: 2472–2477.
  • Vilchèze C, Wang F, Arai M et al.Transfer of a point mutation in Mycobacterium tuberculosis inhA resolves the target of isoniazid. Nat Med 2006; 12: 1027–1029.
  • Pretorius GS, van Helden PD, Sirgel F, Eisenach KD, Victor TC.Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother 1995; 39: 2276–2281.
  • Fenner L, Egger M, Bodmer T et al.Effect of mutation and genetic background on drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012; 56: 3047–3053.
  • Cockerill FR 3rd, Uhl JR, Temesgen Z et al.Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J Infect Dis 1995; 171: 240–245.
  • Ramaswamy S, Musser JM.Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 1998; 79: 3–29.
  • Sreevatsan S, Pan X, Stockbauer KE et al.Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 1997; 94: 9869–9874.
  • Tukvadze N, Kempker RR, Kalandadze I et al.Use of a molecular diagnostic test in AFB smear positive tuberculosis suspects greatly reduces time to detection of multidrug resistant tuberculosis. PLoS One 2012; 7: e31563.
  • García-Sierra N, Lacoma A, Prat C et al.Pyrosequencing for rapid molecular detection of rifampin and isoniazid resistance in Mycobacterium tuberculosis strains and clinical specimens. J Clin Microbiol 2011; 49: 3683–3686.
  • Piatek AS, Telenti A, Murray MR et al.Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Antimicrob Agents Chemother 2000; 44: 103–110.
  • Ramasubban G, Therese KL, Lakshmipathy D, Sridhar R, Meenakshi N, Madhavan HN.Detection of novel and reported mutations in the rpoB, katG and inhA genes in multidrug-resistant tuberculosis isolates: a hospital-based study. J Glob Antimicrob Resist 2014; 3: 1–4.
  • Ando H, Kondo Y, Suetake T et al.Identification of katG mutations associated with high-level isoniazid resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2010; 54: 1793–1799.
  • Syah YM, Retnoningrum DS, Noer AS, Shigeoka S, Natalia D.Novel mutations in katG gene of a clinical isolate of isoniazid-resistant Mycobacterium tuberculosis. Biologia (Bratisl) 2012; 67: 41–47.
  • Lee AS, Lim IH, Tang LL, Telenti A, Wong SY.Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother 1999; 43: 2087–2089.
  • Daniel J, Oh TJ, Lee CM, Kolattukudy PE.AccD6, a member of the Fas II locus, is a functional carboxyltransferase subunit of the acyl-coenzyme A carboxylase in Mycobacterium tuberculosis. J Bacteriol 2007; 189: 911–917.