955
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

LtpA, a CdnL-type CarD regulator, is important for the enzootic cycle of the Lyme disease pathogen

, , , , , , & show all
Pages 1-9 | Received 05 Apr 2018, Accepted 04 Jun 2018, Published online: 09 Jul 2018

References

  • Galbis-MartinezMFontesMMurilloFJThe high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genesGenetics2004167 1585 159510.1534/genetics.104.0292071471020
  • García-MorenoDCdnL, a member of the large CarD-like family of bacterial proteins, is vital for Myxococcus xanthus and differs functionally from the global transcriptional regulator CarDNucleic Acids Res.2010384586459810.1093/nar/gkq2142919716
  • NicolasFJCayuelaMLMartinez-ArgudoIMRuiz-VazquezRMMurilloFJHigh mobility group I(Y)-like DNA-binding domains on a bacterial transcription factorProc. Natl Acad. Sci. USA1996936881688510.1073/pnas.93.14.6881
  • SrivastavaDBStructure and function of CarD, an essential mycobacterial transcription factorProc. Natl Acad. Sci. USA2013110126191262410.1073/pnas.1308270110
  • StallingsCLCarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistenceCell200913814615910.1016/j.cell.2009.04.0412756155
  • Gallego-GarcíaAStructural insights into RNA polymerase recognition and essential function of Myxococcus xanthus CdnLPLoS ONE20149e10894610.1371/journal.pone.01089464182748
  • GultenGSacchettiniJCStructure of the mtb CarD/RNAP β-Lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for mtb CarDStructure2013211859186910.1016/j.str.2013.08.0143894638
  • KaurGDuttaDThakurKGCrystal structure of Mycobacterium tuberculosis CarD, an essential RNA polymerase binding protein, reveals a quasidomain‐swapped dimeric structural architectureProtein. Struct. Funct. Bioinformatics20148287988410.1002/prot.24419
  • BaeBCarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complexeLife20154e08505459316110.7554/eLife.08505
  • FlentieKGarnerALStallingsCLMycobacterium tuberculosis transcription machinery: ready to respond to host attacksJ. Bacteriol.20161981360137310.1128/JB.00935-154836228
  • WardaAKTempelaarsMHBoekhorstJAbeeTGrootMNNIdentification of CdnL, a putative transcriptional regulator involved in repair and outgrowth of heat-damaged Bacillus cereus sporesPLoS ONE201611e014867010.1371/journal.pone.01486704746229
  • AbeeTWelsMde BeenMden BestenHFrom transcriptional landscapes to the identification of biomarkers for robustnessMicrob. Cell Fact.201110S910.1186/1475-2859-10-S1-S93231935
  • RadolfJDCaimanoMJStevensonBHuLTOf ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetesNat. Rev. Microbiol.201210879910.1038/nrmicro27143313462
  • SamuelsDSGene regulation in Borrelia burgdorferiAnnu Rev. Microbiol20116547949910.1146/annurev.micro.112408.134040
  • CaimanoMJDrecktrahDKungFSamuelsDSInteraction of the Lyme disease spirochete with its tick vectorCell. Microbiol.20161891992710.1111/cmi.126095067140
  • HeMCyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticksPLoS Pathog.20117e100213310.1371/journal.ppat.10021333128128
  • KostickJLThe diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetesMol. Microbiol20118121923110.1111/j.1365-2958.2011.07687.x3124615
  • SultanSZAnalysis of the HD-GYP domain cyclic dimeric GMP phosphodiesterase reveals a role in motility and the enzootic life cycle of Borrelia burgdorferiInfect. Immun.2011793273328310.1128/IAI.05153-113147568
  • SultanSZPitzerJEMillerMRMotalebMAAnalysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulenceMol. Microbiol.20107712814210.1111/j.1365-2958.2010.07191.x2907449
  • CaimanoMJCyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmissionInfect. Immun.2015833043306010.1128/IAI.00315-154496621
  • CaimanoMJThe hybrid histidine kinase Hk1 is part of a two-component system that is essential for survival of Borrelia burgdorferi in feeding Ixodes scapularis ticksInfect. Immun.2011793117313010.1128/IAI.05136-113147546
  • CuñéJThe Leptospira interrogans lexA gene is not autoregulatedJ. Bacteriol.20051875841584510.1128/JB.187.16.5841-5845.20051196068
  • DrecktrahDThe Borrelia burgdorferi RelA/SpoT homolog and stringent response regulate survival in the tick vector and global gene expression during starvationPLoS Pathog.201511e100516010.1371/journal.ppat.10051604570706
  • BugryshevaJCharacterization of the stringent response and relBbu expression in Borrelia burgdorferiJ. Bacteriol.200318595796510.1128/JB.185.3.957-965.2003142832
  • BugryshevaJVCharacterization of the RelBbu Regulon in Borrelia burgdorferi reveals modulation of glycerol metabolism by (p)ppGppPLoS ONE201510e011806310.1371/journal.pone.01180634331090
  • PappasCJBorrelia burgdorferi requires glycerol for maximum fitness during the tick phase of the enzootic cyclePLoS Pathog.20117e100210210.1371/journal.ppat.10021023131272
  • SzeCWStudy of the response regulator Rrp1 reveals its regulatory role in chitobiose utilization and virulence of Borrelia burgdorferiInfect. Immun.2013811775178710.1128/IAI.00050-133647990
  • NovakEASultanSZMotalebMAThe cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferiFront. Cell Infect. Microbiol201445610.3389/fcimb.2014.000564013479
  • Bontemps-GalloSLawrenceKGherardiniFCTwo different virulence-related regulatory pathways in Borrelia burgdorferi are directly affected by osmotic fluxes in the blood meal of feeding Ixodes ticksPLoS Pathog.201612e100579110.1371/journal.ppat.10057914985143
  • YangXFDifferential expression of a putative CarD-like transcriptional regulator, LtpA, in Borrelia burgdorferiInfect. Immun.2008764439444410.1128/IAI.00740-082546836
  • LinTAnalysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivityPLoS ONE20127e4753210.1371/journal.pone.00475323485029
  • LouvelHComparative and functional genomic analyses of iron transport and regulation in Leptospira sppJ. Bacteriol.20061887893790410.1128/JB.00711-061636298
  • SamuelsDSMachKGaronCFGenetic transformation of the Lyme disease agent Borrelia burgdorferi with coumarin-resistant gyrBJ. Bacteriol.19941766045604910.1128/jb.176.19.6045-6049.1994196823
  • YangXFPalUAlaniSMFikrigENorgardMVEssential role for OspA/B in the life cycle of the Lyme disease spirocheteJ. Exp. Med.200419964164810.1084/jem.200319602213294
  • KawabataHNorrisSJWatanabeHBBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotypeInfect. Immun.2004727147715410.1128/IAI.72.12.7147-7154.2004529111
  • Gallego-GarcíaACaulobacter crescentus CdnL is a non-essential RNA polymerase-binding protein whose depletion impairs normal growth and rRNA transcriptionSci. Rep.2017201710.1038/srep43240
  • DavisEChenJLeonKDarstSACampbellEAMycobacterial RNA polymerase forms unstable open promoter complexes that are stabilized by CarDNucleic Acids Res.201443gku1231
  • RammohanJManzanoARGarnerALStallingsCLGalburtEACarD stabilizes mycobacterial open complexes via a two-tiered kinetic mechanismNucleic Acids Res2015433272328510.1093/nar/gkv0784381055
  • Dunham-EmsSMLive imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticksJ. Clin. Invest20091193652366510.1172/JCI394012786795
  • BarbourAGIsolation and cultivation of Lyme disease spirochetesYale J. Biol. Med.1984575215252589996
  • XuHRole of acetyl-phosphate in activation of the Rrp2-RpoN-RpoS pathway in Borrelia burgdorferiPLoS Pathog.20106e100110410.1371/journal.ppat.10011042940757
  • OuyangZDekaRKNorgardMVBosR (BB0647) controls the RpoN-RpoS regulatory pathway and virulence expression in Borrelia burgdorferi by a novel DNA-binding mechanismPLoS Pathog.20117e100127210.1371/journal.ppat.10012723037356