12,199
Views
108
CrossRef citations to date
0
Altmetric
Review Article

The disparate effects of bacteriophages on antibiotic-resistant bacteria

ORCID Icon
Pages 1-12 | Received 29 Jan 2018, Accepted 05 Sep 2018, Published online: 10 Oct 2018

References

  • Lima-MendezGToussaintALeplaeRA modular view of the bacteriophage genomic space: identification of host and lifestyle marker modulesRes. Microbiol.2011162 737 74610.1016/j.resmic.2011.06.00621767638
  • McNairKBaileyBAEdwardsRAPHACTS, a computational approach to classifying the lifestyle of phagesBioinformatics201228614618328991710.1093/bioinformatics/bts014
  • ZinderNDLederbergJGenetic exchange in SalmonellaJ. Bacteriol.195264679699169409
  • UbukataKKonnoMFujiiRTransduction of drug resistance to tetracycline, chloramphenicol, macrolides, lincomycin and clindamycin with phages induced from Streptococcus pyogenesJ. Antibiot.19752868168810.7164/antibiotics.28.6811102514
  • Mazaheri Nezhad FardRBartonMDHeuzenroederMWBacteriophage-mediated transduction of antibiotic resistance in enterococciLett. Appl. Microbiol.20115255956410.1111/j.1472-765X.2011.03043.x21395627
  • VargaMEfficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 cloneFEMS Microbiol. Lett.201233214615210.1111/j.1574-6968.2012.02589.x22553940
  • BroudyTBFischettiVAIn vivo lysogenic conversion of Tox(−) Streptococcus pyogenes to Tox(+) with Lysogenic Streptococci or free phageInfect. Immun.2003713782378616197410.1128/IAI.71.7.3782-3786.2003
  • SchmiegerHSchicklmaierPTransduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104FEMS Microbiol. Lett.199917025125610.1111/j.1574-6968.1999.tb13381.x9919675
  • VargaMPantůčekRRůžičkováVDoškařJMolecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureusJ. Gen. Virol.20169725826810.1099/jgv.0.00032926537974
  • LeeYDParkJHPhage conversion for β-lactam antibiotic resistance of Staphylococcus aureus from foodsJ. Microbiol. Biotechnol.20162626326910.4014/jmb.1508.08042
  • MoneckeSA field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureusPLoS One20116e17936307180810.1371/journal.pone.0017936
  • ScharnCRTenoverFCGoeringRVTransduction of Staphylococcal Cassette chromosome mec elements between strains of Staphylococcus aureusAntimicrob. Agents Chemother.20135752335238381128010.1128/AAC.01058-13
  • ChenJNovickRPPhage-mediated intergeneric transfer of toxin genesScience200932313914110.1126/science.1164783
  • Tormo-MásMAMoonlighting bacteriophage proteins derepress staphylococcal pathogenicity islandsNature2010465779782351804110.1038/nature09065
  • NovickRPChristieGEPenadésJRThe phage-related chromosomal islands of Gram-positive bacteriaNat. Rev. Microbiol.20108541551352286610.1038/nrmicro2393
  • HaaberJPenadésJRIngmerHTransfer of antibiotic resistance in Staphylococcus aureusTrends Microbiol.20172589390510.1016/j.tim.2017.05.011
  • LyrasDChloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringensAntimicrob. Agents Chemother.19984215631567105645
  • GohSPhage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strainsmBio20134e0084013387024610.1128/mBio.00840-13
  • MašlaňováIStříbnáSDoškařJPantüčekREfficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phageFEMS Microbiol. Lett.2016363fnw21110.1093/femsle/fnw211
  • MartiEVariatzaEBalcázarJLBacteriophages as a reservoir of extended-spectrum β-lactamase and fluoroquinolone resistance genes in the environmentClin. Microbiol. Infect.201420O456O45910.1111/1469-0691.12446
  • Colomer-LluchMAntibiotic resistance genes in bacterial and bacteriophage fractions of Tunisian and Spanish wastewaters as markers to compare the antibiotic resistance patterns in each populationEnviron. Int.20147316717510.1016/j.envint.2014.07.00325127043
  • RossJToppEAbundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transductionAppl. Environ. Microbiol.20158179057913461694010.1128/AEM.02363-15
  • MašlaňováIBacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequenciesEnviron. Microbiol. Rep.20135667310.1111/j.1758-2229.2012.00378.x23757132
  • Calero-CáceresWMuniesaMPersistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewaterWater Res.201695111810.1016/j.watres.2016.03.00626978717
  • EnaultFPhages rarely encode antibiotic resistance genes: a cautionary tale for virome analysesISME J.20171123724710.1038/ismej.2016.90
  • RouxSEnaultFHurwitzBLSullivanMBVirSorter: mining viral signal from microbial genomic dataPeerJ20153e985445102610.7717/peerj.985
  • RolainJMFancelloLDesnuesCRaoultDBacteriophages as vehicles of the resistome in cystic fibrosisJ. Antimicrob. Chemother.2011662444244710.1093/jac/dkr318
  • ModiSRLeeHHSpinaCSCollinsJJAntibiotic treatment expands the resistance reservoir and ecological network of the phage metagenomeNature2013499219222371053810.1038/nature12212
  • AbelesSRLyMSantiago-RodriguezTMPrideDTEffects of long term antibiotic therapy on human oral and fecal viromesPLoS One201510e0134941455028110.1371/journal.pone.0134941
  • YasminAComparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophagesJ. Bacteriol.20101921122113010.1128/JB.01293-0920008075
  • Meessen-PinardMSekulovicOFortierLCEvidence of in vivo prophage induction during Clostridium difficile infectionAppl. Environ. Microbiol.20127876627670348573210.1128/AEM.02275-12
  • SchuchRFischettiVADetailed genomic analysis of the Wbeta and gamma phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistanceJ. Bacteriol.200618830373051144698910.1128/JB.188.8.3037-3051.2006
  • VolkovaVVLuZBesserTGröhnYTModeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spreadAppl. Environ. Microbiol.20148043504362406868410.1128/AEM.00446-14
  • LehoursPGenome sequencing reveals a phage in Helicobacter pylorimBio20112e0023911322160410.1128/mBio.00239-11
  • BrussowHCanchayaCHardtWDPhages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversionMicrobiol. Mol. Biol. Rev.20046856060251524910.1128/MMBR.68.3.560-602.2004
  • MatsushiroASatoKMiyamotoHYamamuraTHondaTInduction of prophages of enterohemorrhagic Escherichia coli O157:H7 with norfloxacinJ. Bacteriol.19991812257226093641
  • KimmittPTHarwoodCRBarerMRInduction of type 2 Shiga toxin synthesis in Escherichia coli O157 by 4-quinolonesLancet19993531588158910.1016/S0140-6736(99)00621-210334263
  • BaharogluZMazelDSOS, the formidable strategy of bacteria against aggressionsFEMS Microbiol. Rev.2014381126114510.1111/1574-6976.1207724923554
  • Ptashne, M. (eds) A genetic switch: Gene Control and Phage Lambda (Cambridge, England: Cell Press; and Palo Alto, CA: Blackwell Press, 1986).
  • BielaszewskaMEffects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strainAntimicrob. Agents Chemother.20125632773282337077510.1128/AAC.06315-11
  • MellmannAProspective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technologyPLoS One20116e22751314051810.1371/journal.pone.0022751
  • NassarFJRahalEASabraAMatarGMEffects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157:H7 Shiga toxin release and role of the SOS responseFoodborne Pathog. Dis.20131080581210.1089/fpd.2013.151023808851
  • Holt, G. S. et al. Shigatoxin encoding Bacteriophage φ 24 B modulates bacterial metabolism to raise antimicrobial tolerance. Sci. Rep. (2017). 10.1038/srep40424
  • WaldorMKMekalanosJJLysogenic conversion by a filamentous phage encoding cholera toxinScience19962721910191410.1126/science.272.5270.19108658163
  • WaldorMKFriedmanDIPhage regulatory circuits and virulence gene expressionCurr. Opin. Microbiol.2005845946510.1016/j.mib.2005.06.00115979389
  • SharonITime series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonizationGenome Res.201323111120353067010.1101/gr.142315.112
  • ChenJIntra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phagesISME J.201591260126310.1038/ismej.2014.18725314321
  • UbedaCAntibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococciMol. Microbiol.20055683684410.1111/j.1365-2958.2005.04584.x15819636
  • MaiquesEβ-lactam antibiotics induce the SOS response and horizontal transfer of virulence factors in Staphylococcus aureusJ. Bacteriol.200618827262729142841410.1128/JB.188.7.2726-2729.2006
  • IngreyKTRenJPrescottJFA fluoroquinolone induces a novel mitogen-encoding bacteriophage in Streptococcus canisInfect. Immun.2003713028303315571110.1128/IAI.71.6.3028-3033.2003
  • BanksDJLeiBMusserJMProphage induction and expression ofprophage-encoded virulence factors in group A Streptococcus serotype M3 strain MGAS315Infect. Immun.2003717079708630891110.1128/IAI.71.12.7079-7086.2003
  • LópezEInduction of prophages by fluoroquinolones in Streptococcus pneumoniae: implications for emergence of resistance in genetically-related clonesPLoS One20149e94358398180610.1371/journal.pone.0094358
  • TunjungputriRNPhage-derived protein induces increased platelet activation and is associated with mortality in patients with invasive pneumococcal diseasemBio20178e0198416524139710.1128/mBio.01984-16
  • BilleEA virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisationPLoS. Pathog.201713e1006495552660110.1371/journal.ppat.1006495
  • SelvaLKilling niche competitors by remote-control bacteriophage inductionProc. Natl Acad. Sci. USA20091061234123810.1073/pnas.080960010619141630
  • TreeJJGrannemanSMcAteerSPTollerveyDGallyDLIdentification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coliMol. Cell201455199213410402610.1016/j.molcel.2014.05.006
  • GovindRVediyappanGRolfeRDDupuyBFralickJABacteriophage-mediated toxin gene regulation in Clostridium difficileJ. Virol.2009831203712045278674110.1128/JVI.01256-09
  • ShanJProphage carriage and diversity within clinically relevant strains of Clostridium difficileAppl. Environ. Microbiol.20127860276034341659310.1128/AEM.01311-12
  • BobayLMTouchonMRochaEPCPervasive domestication of defective prophages by bacteriaProc. Natl Acad. Sci. USA2014111121271213210.1073/pnas.140533611125092302
  • WangXCryptic prophages help bacteria cope with adverse environmentsNat. Commun.20101310529610.1038/ncomms1146
  • De PaepeMTemperate phages acquire DNA from defective prophages by relaxed homologous recombination: the role of Rad52-like recombinasesPLoS Genet.201410e1004181394523010.1371/journal.pgen.1004181
  • KnudsenGMFrombergANgYGramLSublethal concentrations of antibiotics cause shift to anaerobic metabolism in Listeria monocytogenes and induce phenotypes linked to antibiotic toleranceFront. Microbiol.201671091494039710.3389/fmicb.2016.01091
  • KimJCChuiLWangYShenJJeonBExpansion of Shiga toxin-producing Escherichia coli by use of bovine antibiotic growth promotersEmerg. Infect. Dis.201622802809486151810.3201/eid2205.151584
  • WangXWoodTKCryptic prophages as targets for drug developmentDrug Resist. Updat.201627303810.1016/j.drup.2016.06.00127449596
  • KarpinskiJDirected evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificityNat. Biotechnol.20163440140910.1038/nbt.346726900663
  • MarraffiniLASontheimerEJCRISPR interference limits horizontal gene transfer in staphylococci by targeting DNAScience200832218431845269565510.1126/science.1165771
  • RusconiBWhole genome sequencing for genomics-guided investigations of Escherichia coli O157:H7 outbreaksFront. Microbiol.20167985492803810.3389/fmicb.2016.00985
  • MauraDGaltierMLe BouguénecCDebarbieuxLVirulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestineAntimicrob. Agents Chemother.20125662356242349719910.1128/AAC.00602-12
  • PirnayJPQuality and safety requirements for sustainable phage therapy productsPharm. Res.20153221732179445225310.1007/s11095-014-1617-7
  • MerabishviliMQuality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trialsPLoS One20094e4944265415310.1371/journal.pone.0004944
  • LaxminarayanRAntibiotic resistance-the need for global solutionsLancet Infect. Dis.2013131057109810.1016/S1473-3099(13)70318-924252483
  • LingLLA new antibiotic kills pathogens without detectable resistanceNature201551745545910.1038/nature1409825561178
  • LatzSPreliminary survey of local bacteriophages with lytic activity against multi-drug resistant bacteriaJ. Basic Microbiol.2016561710.1002/jobm.201600108
  • PantůčekRThe polyvalent staphylococcal phagephi812: Its host-range mutants and related phagesVirology200824624125210.1006/viro.1998.9203
  • KellyDMcAuliffeORossRPO’MahonyJCoffeyADevelopment of a broad-host-range phage cocktail for biocontrolBioeng. Bugs20112313710.4161/bbug.2.1.1365721636985
  • WitteboleXDe RoockSOpalSMA historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogensVirulence2014522623510.4161/viru.2599123973944
  • SlopekSWeber-DabrowskaBDabrowskiMKucharewicz-KrukowskaAResults of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986Arch. Immunol. Ther. Exp.198735569583
  • KaźmierczakZGórskiADabrowskaKFacing antibiotic resistance: Staphylococcus aureus phages as a medical toolViruses2014625512570411378310.3390/v6072551
  • FishRBacteriophage treatment of intransigent diabetic toe ulcers: a case seriesJ. Wound Care201625S27S3310.12968/jowc.2016.25.Sup7.S2727410468
  • SemlerDDGoudieADFinlayWHDennisJJAerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infectionsAntimicrob. Agents Chemother.20145840054013406859410.1128/AAC.02388-13
  • WrightAHawkinsCHÄnggårdEEHarperDRA controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; A preliminary report of efficacyClin. Otolaryngol.20093434935710.1111/j.1749-4486.2009.01973.x19673983
  • SchooleyRTDevelopment and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infectionAntimicrob. Agents Chemother.201761e0095417561051810.1128/AAC.00954-17
  • KingwellKBacteriophage therapies re-enter clinical trialsNat. Rev. Drug Discov.20151451551610.1038/nrd469526228748
  • PiresDPCletoSSillankorvaSAzeredoJLuTKGenetically engineered phages: a review of advances over the last decadeMicrobiol. Mol. Biol. Rev.201680523543498167810.1128/MMBR.00069-15
  • OjalaVLaitalainenJJalasvuoriMFight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistanceEvol. Appl.20136925932377909310.1111/eva.12076
  • ChanBKPhage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosaSci. Rep.20166488093210.1038/srep26717
  • ChanBKPhage treatment of an aortic graft infected with Pseudomonas aeruginosaEvol. Med. Public Health20181606610.1093/emph/eoy005
  • SalemMVirtanenSKorkealaHSkurnikMIsolation and characterization of Yersinia-specific bacteriophages from pig stools in FinlandJ. Appl. Microbiol.201511859960810.1111/jam.1272225495090
  • DalmassoMHillCRossRPExploiting gut bacteriophages for human healthTrends Microbiol.20142239940510.1016/j.tim.2014.02.01024656964
  • ScarpelliniEThe human gut microbiota and virome: potential therapeutic implicationsDig. Liver. Dis.2015471007101210.1016/j.dld.2015.07.008
  • GaltierMBacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota compositionEnviron. Microbiol.2016182237224510.1111/1462-2920.13284
  • MaiVUkhanovaMReinhardMKLiMSulakvelidzeABacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiotaBacteriophage20155e1088124474583310.1080/21597081.2015.1088124
  • NilssonASPhage therapy—constraints and possibilitiesUps J. Med. Sci.2014119192198403455810.3109/03009734.2014.902878
  • LevinBRBullJJPopulation and evolutionary dynamics of phage therapyNat. Rev. Microbiol.2004216617310.1038/nrmicro822
  • MizoguchiKCoevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous cultureAppl. Environ. Microbiol.20036917017615239010.1128/AEM.69.1.170-176.2003
  • BucklingARaineyPBAntagonistic coevolution between a bacterium and a bacteriophageProc. Biol. Sci.2002269931936169098010.1098/rspb.2001.1945
  • MarstonMFRapid diversification of coevolving marine Synechococcus and a virusProc. Natl Acad. Sci. USA20121094544454910.1073/pnas.1120310109
  • LehmanSMDonlanRMBacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter modelAntimicrob. Agents Chemother.20155911271137433589810.1128/AAC.03786-14
  • FrimanVPPre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolatesJ. Evol. Biol.20162918819810.1111/jeb.12774
  • BielkeLHigginsSDonoghueADonoghueDHargisBMSalmonella host range of Bacteriophages that infect multiple generaPoult. Sci.2007862536254010.3382/ps.2007-00250
  • LaantoEBamfordJKHLaaksoJSundbergLRPhage-driven loss of virulence in a fish pathogenic bacteriumPLoS One20127e53157353406510.1371/journal.pone.0053157
  • CastilloDChristiansenRHDalsgaardIMadsenLMiddelboeMBacteriophage resistance mechanisms in the fish pathogen Flavobacterium psychrophilum: linking genomic mutations to changes in bacterial virulence factorsAppl. Environ. Microbiol.20158111571167429249310.1128/AEM.03699-14
  • SeedKDEvolutionary consequences of intra-patient phage predation on microbial populationseLife2014311010.7554/eLife.03497
  • ComeauAMTétartFTrojetSNPrèreMFKrischHMPhage-antibiotic synergy (PAS): β-lactam and quinolone antibiotics stimulate virulent phage growthPLoS One20072e799194905010.1371/journal.pone.0000799
  • KaurSHarjaiKChhibberSMethicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibioticsAppl. Environ. Microbiol.20127882278233349735310.1128/AEM.02371-12
  • Torres-BarcelóClaraHochbergMichael E.Evolutionary Rationale for Phages as Complements of AntibioticsTrends in Microbiology201624424925610.1016/j.tim.2015.12.01126786863
  • Torres-BarcelóCFranzonBVasseMHochbergMELong-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosaEvol. Appl.20169583595483146010.1111/eva.12364
  • KirbyAESynergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureusPLoS One20127e51017351140410.1371/journal.pone.0051017
  • HuffWEHuffGRRathNCBalogJMDonoghueAMTherapeutic efficacy of bacteriophage and Baytril (enrofloxacin) individually and in combination to treat colibacillosis in broilersPoult. Sci.2004831944194710.1093/ps/83.12.194415615004
  • ChhibberSKaurTKaurSandeepCo-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infectionsPLoS One20138e56022357214610.1371/journal.pone.0056022
  • AggarwalaVLiangGBushmanFDViral communities of the human gut: metagenomic analysis of composition and dynamicsMob. DNA20178562740510.1186/s13100-017-0095-y