1,464
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Evidence of a fixed internal gene constellation in influenza A viruses isolated from wild birds in Argentina (2006–2016)

, , , , , , , , , , & ORCID Icon show all
Pages 1-13 | Received 26 Jul 2018, Accepted 31 Oct 2018, Published online: 28 Nov 2018

References

  • FouchierRAMMunsterVJEpidemiology of low pathogenic avian influenza viruses in wild birdsRev. Sci. Tech.200928 49 5810.20506/rst.28.1.1863
  • KawaokaYKraussSWebsterRGAvian-to-Human Transmission of the PB1 Gene of Influenza A Viruses in the 1957 and 1968 PandemicsJ. Virol.19896346034608251093
  • WHO/OIE/FAO H5N1 Evolution Working Group.Toward a unified nomenclature system for highly pathogenic avian influenza virus (H5N1)Emerg. Infect. Dis.200814e110.3201/eid1407.071681
  • LeeDHet al.Intercontinental Spread of Asian-Origin H5N8 to North America through Beringia by Migratory BirdsJ. Virol.2015896521652410.1128/JVI.00728-15
  • VergneTet al.Avian influenza vaccination of poultry and passive case reporting, EgyptEmerg. Infect. Dis.2012182076207810.3201/eid1812.120616
  • WaziriNEet al.Evaluating a surveillance system: live-bird market surveillance for highly pathogenic avian influenza, a case studyPan Afr. Med. J.201418114199346
  • HurtACet al.Detection of evolutionarily distinct avian influenza A viruses in AntarcticamBio20145e01098e0111410.1128/mBio.01098-14
  • SuarezDLet al.Recombination resulting in virulence shift in avian influenza outbreak, ChileEmerg. Infect. Dis.20041069369910.3201/eid1004.030396
  • ObenauerJCet al.Large-Scale Sequence Analysis of Avian Influenza IsolatesScience20063111576158010.1126/science.1121586
  • BulachDet al.Molecular analysis of H7 avian influenza viruses from Australia and New Zealand: genetic diversity and relationships from 1976 to 2007J. Virol.2010849957996610.1128/JVI.00930-10
  • WebsterRGBeanWJGormanOTChambersTMKawaokaYEvolution and ecology of influenza A virusesMicrobiol. Rev.199256152179372859
  • PeredaAJet al.Avian influenza virus isolated in wild waterfowl in Argentina: evidence of a potentially unique phylogenetic lineage in South AmericaVirology200837836337010.1016/j.virol.2008.06.010
  • RimondiAet al.Phylogenetic analysis of H6 influenza viruses isolated from rosy-billed pochards (Netta peposaca) in argentina reveals the presence of different HA gene clustersJ. Virol.201185133541336210.1128/JVI.05946-11
  • XuKet al.Isolation and characterization of an H9N2 influenza virus isolated in ArgentinaVirus Res.2012168414710.1016/j.virusres.2012.06.010
  • WorobeyMHanGZRambautAA synchronized global sweep of the internal genes of modern avian influenza virusNature201450825425710.1038/nature13016
  • SpackmanEMcCrackenKGWinkerKSwayneDEAn avian influenza virus from waterfowl in South America contains genes from North American avian and equine lineagesAvian Dis.20075127327410.1637/7529-032106R.1
  • SpackmanEMcCrackenKGWinkerKSwayneDEH7N3 avian influenza virus found in a South American wild duck is related to the Chilean 2002 poultry outbreak, contains genes from equine and North American wild bird lineages, and is adapted to domestic turkeysJ. Virol.2006807760776410.1128/JVI.00445-06
  • HurtACet al.Evidence for the introduction, reassortment, and persistence of diverse influenza A viruses in AntarcticaJ. Virol.2016909674968210.1128/JVI.01404-16
  • NelsonMIet al.The genetic diversity of influenza A viruses in wild birds in PeruPLoS One201611e014605910.1371/journal.pone.0146059
  • Jiménez-BluhmPet al.Wild birds in Chile Harbor diverse avian influenza A viruses articleEmerg. Microbes Infect.201874710.1038/s41426-018-0046-9
  • NobusawaEet al.Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A virusesVirology199118247548510.1016/0042-6822(91)90588-3
  • ShiYWuYZhangWQiJGaoGFEnabling the “host jump”: structural determinants of receptor-binding specificity in influenza A virusesNat. Rev. Microbiol.20141282283110.1038/nrmicro3362
  • WangFet al.Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preferenceEMBO J.2015341661167310.15252/embj.201590960
  • TzarumNet al.Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virusCell. Host. Microbe20151736937610.1016/j.chom.2015.02.005
  • SongHet al.Avian-to-human receptor-binding adaptation by influenza A virus hemagglutinin H4Cell Rep.2017201201121410.1016/j.celrep.2017.07.028
  • DeomCMCatonAJSchulzeITHost cell-mediated selection of a mutant influenza A virus that has lost a complex oligosaccharide from the tip of the hemagglutininProc. Natl. Acad. Sci. U. S. A.1986833771377510.1073/pnas.83.11.3771
  • LiangLet al.Genetics, receptor binding, replication, and mammalian transmission of H4 Avian influenza viruses isolated from live poultry markets in ChinaJ. Virol.2016901455146910.1128/JVI.02692-15
  • WangWet al.Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferretsJ. Virol.2010846570657710.1128/JVI.00221-10
  • WangGet al.H6 influenza viruses pose a potential threat to human healthJ. Virol.2014883953396410.1128/JVI.03292-13
  • BaronJet al.Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A virusesJ. Virol.2013871811182010.1128/JVI.02320-12
  • HeuiSSHoffmannEWebsterRGLethal H5N1 influenza viruses escape host anti-viral cytokine responsesNat. Med.2002895095410.1038/nm757
  • SubbaraoEKLondonWMurphyBRA single amino acid in the PB2 gene of influenza A virus is a determinant of host rangeJ. Virol.19936717611764240216
  • HattaMGaoPHalfmannPKawaokaYMolecular basis for high virulence of Hong Kong H5N1 influenza A virusesScience20012931840184210.1126/science.1062882
  • ShinyaKet al.PB2 amino acid at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong H5N1 influenza A viruses in miceVirology200432025826610.1016/j.virol.2003.11.030
  • McKimm-BreschkinJLResistance of influenza viruses to neuraminidase inhibitors–a reviewAntivir. Res.20004711710.1016/S0166-3542(00)00103-0
  • AbedYGoyetteNBoivinGGeneration and characterization of recombinant influenza A (H1N1) viruses harboring amantadine resistance mutationsAntimicrob. Agents Chemother.20054955655910.1128/AAC.49.2.556-559.2005
  • BazMAbedYSimonPHamelinMBoivinGEffect of the neuraminidase mutation H274Y conferring resistance to oseltamivir on the replicative capacity and virulence of old and recent human influenza A(H1N1) virusesJ. Infect. Dis.201020174074510.1086/650464
  • GabrielGet al.The viral polymerase mediates adaptation of an avian influenza virus to a mammalian hostProc. Natl Acad. Sci. USA.2005102185901859510.1073/pnas.0507415102
  • KrumbholzAet al.Current knowledge on PB1-F2 of influenza A virusesMed. Microbiol. Immunol.2011200697510.1007/s00430-010-0176-8
  • KošíkIHollýJRussGPB1-F2 expedition from the whole protein through the domain to aa residue functionActa Virol.20135713814810.4149/av_2013_02_138
  • ConenelloGMZamarinDPerroneLATumpeyTPalesePA single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulencePLoS. Pathog.200731414142110.1371/journal.ppat.0030141
  • MarjukiHet al.Three amino acid changes in PB1-F2 of highly pathogenic H5N1 avian influenza virus affect pathogenicity in mallard ducksArch. Virol.201015592593410.1007/s00705-010-0666-4
  • ZamarinDOrtigozaMBPalesePInfluenza A virus PB1-F2 protein contributes to viral pathogenesis in miceJ. Virol.2006807976798310.1128/JVI.00415-06
  • JaggerBWet al.An overlapping protein-coding region in influenza A virus segment 3 modulates the host responseScience201233719920410.1126/science.1222213
  • GaoHet al.The contribution of PA-X to the virulence of pandemic 2009 H1N1 and highly pathogenic H5N1 avian influenza virusesSci. Rep.2015510.1038/srep08262
  • Gonzalez-ReicheASet al.Evidence of intercontinental spread and uncommon variants of low-pathogenicity avian influenza viruses in ducks overwintering in GuatemalamSphere20172e003621610.1128/mSphere.00362-16
  • BarrigaGPet al.Avian influenza virus H5 strain with north American and Eurasian lineage genes in an Antarctic penguinEmerg. Infect. Dis.2016222221222310.3201/eid2212.161076
  • KraussSet al.Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological “hot spot” for influenza virusesProc. Biol. Sci.20102773373337910.1098/rspb.2010.1090
  • De AraujoJet al.Avian Influenza Virus (H11N9) in Migratory Shorebirds Wintering in the Amazon Region, BrazilPLoS One20149e11014110.1371/journal.pone.0110141
  • Kear, J. (eds). Ducks, geese, and swans (Oxford University Press, 2005).
  • HobsonKAStable isotopes and the determination of avian migratory connectivity and seasonal interactionsAm. Ornithol. Soc.200512210371048
  • Ruegg, K. C. et al. Identifying migrant origins using genetics, isotopes, and habitat suitability. bioRxiv10.1101/085456 (2013).
  • BridgeESet al.Bird migration and avian influenza: A comparison of hydrogen stable isotopes and satellite tracking methodsEcol. Indic.20144526627310.1016/j.ecolind.2014.04.027
  • SpackmanEet al.Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypesJ. Clin. Microbiol.2002403256326010.1128/JCM.40.9.3256-3260.2002
  • HoffmannEStechJGuanYWebsterRGPerezDRUniversal primer set for the full-length amplification of all influenza A virusesArch. Virol.20011462275228910.1007/s007050170002
  • MenaIet al.Origins of the 2009 H1N1 influenza pandemic in swine in MexicoeLife20165e1677710.7554/eLife.16777
  • ShapiroBRambautADrummondAJ Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequencesMol. Biol. Evol.2005237910.1093/molbev/msj021