142
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Relative brain size in Australian birds

, , , &
Pages 160-170 | Received 02 May 2013, Accepted 09 Sep 2013, Published online: 22 Dec 2016

References

  • Barker, F. K., Cibois, A., Schikler, P., Feinstein, J., and Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101, 11040–11045. doi:10.1073/pnas.0401892101
  • Bennett, P. M., and Harvey, P. H. (1985). Relative brain size and ecology in birds. Journal of Zoology 207, 151–169. doi:10.1111/j.1469-7998.1985.tb04920.x
  • Burish, M. J., Kueh, H. Y., and Wang, S. S.-H. (2004). Brain architecture and social complexity in modern and ancient birds. Brain, Behavior and Evolution 63, 107–124. doi:10.1159/000075674
  • Carrete, M., and Tella, J. L. (2011). Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859. doi:10.1371/journal.pone.0018859
  • Chesser, R. T., and ten Have, J. (2007). On the phylogenetic position of the scrub-birds (Passeriformes: Menuridae: Atrichornithidae) of Australia. Journal of Ornithology 148, 471–476. doi:10.1007/s10336-007-0174-9
  • Christidis, L., and Boles, W. E. (2008). ‘Systematics and Taxonomy of Australian Birds.’ (CSIRO Publishing: Melbourne.)
  • Christidis, L., Irestedt, M., Rowe, D., Boles, W. E., and Norman, J. A. (2011). Mitochondrial and nuclear DNA phylogenies reveal a complex evolutionary history in the Australasian robins (Passeriformes: Petroicidae). Molecular Phylogenetics and Evolution 61, 726–738. doi:10.1016/j.ympev.2011.08.014
  • Cockburn, A. (2003). Cooperative breeding in oscine passerines: does sociality inhibit speciation? Proceedings of the Royal Society -B. Biological Sciences 270, 2207–2214. doi:10.1098/rspb.2003.2503
  • Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G., and Johnston, A. (2012). Rise of the generalists: evidence for climate driven homogenization in avian communities. Global Ecology and Biogeography 21, 568–578. doi:10.1111/j.1466-8238.2011.00693.x
  • Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58. doi:10.1126/science.1200303
  • Day, L. B., Westcott, D. A., and Olster, D. H. (2005). Evolution of bower complexity and cerebellum size in bowerbirds. Brain, Behavior and Evolution 66, 62–72. doi:10.1159/000085048
  • Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution 22, 469–493. doi:10.1016/0047-2484(92)90081-J
  • Edwards, S. V., and Naeem, S. (1993). The phylogenetic component of cooperative breeding in perching birds. American Naturalist 141, 754–789. doi:10.1086/285504
  • Emery, N. J., and Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306, 1903–1907. doi:10.1126/science.1098410
  • Emery, N. J., Seed, A. M., von Bayern, A. M. P., and Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society—B. Biological Sciences 362, 489–505. doi:10.1098/rstb.2006.1991
  • Fjeldså, J. (2004). ‘The Grebes.’ (Oxford University Press: Oxford, UK.)
  • Gardner, J. L., Trueman, J. W. H., Ebert, D., Joseph, L., and Magrath, R. D. (2010). Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Molecular Phylogenetics and Evolution 55, 1087–1102. doi:10.1016/j.ympev.2010.02.005
  • Garland, T. Jr, and Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist 155, 346–364. doi:10.1086/303327
  • Garland, T. Jr, Harvey, P. H., and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41, 18–32.
  • Garnett, S. T., and Franklin, D. C. (Eds) (In press). ‘Climate Change Adaptation Plan for Australian Birds.’ (CSIRO Publishing: Melbourne.)
  • Gonzalez, J., Duttmann, H., and Wink, M. (2009). Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology 279, 310–318. doi: 10.1111/j.1469-7998.2009.00622.x
  • Graber, S., Van Schaik, C. P., and Isler, K. (2012). Cooperative breeding and hominin brain size evolution: evidence from a comparative study in birds. American Journal of Physical Anthropology 147(54, Suppl.), 154.
  • Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, A., Han, K.-L., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., and Yuri, T. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768.
  • Harvey, P. H., and Pagel, M. D. (1991). ‘The Comparative Method in Evolutionary Biology.’ (Oxford University Press: Oxford, UK.)
  • Healy, S. D., and Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society—B. Biological Sciences 274, 453–464. doi:10.1098/rspb.2006.3748
  • Higgins, P. J. (Ed.) (1999). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 4. Parrots to Dollarbird.’ (Oxford University Press: Melbourne.)
  • Higgins, P. J., and Davies, S. J. J. F. (Eds) (1996). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 3. Snipe to Pigeons.’ (Oxford University Press: Melbourne.)
  • Higgins, P. J., and Peter, J. M. (Eds) (2002) ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 6. Pardalotes to shrike-thrushes.’ (Oxford University Press: South Melbourne.)
  • Higgins, P. J., Peter, J. M., and Steele, W. K. (Eds) (2001). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 5. Tyrant-flycatchers to Chats.’ (Oxford University Press: South Melbourne.)
  • Higgins, P. J., Peter, J. M., and Cowling, S. J. (Eds) (2006). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 7. Boatbillto Starlings.’ (Oxford University Press: South Melbourne.)
  • Irestedt, M., Jønsson, K. A., Fjeldså, J., Christidis, L., and Ericson, P. G. P. (2009). An unexpectedly long history of sexual selection in birds-of-paradise. BMC Evolutionary Biology 9, 235. doi:10.1186/1471-2148-9-235
  • Isler, K., and van Schaik, C. P. (2009). The expensive brain: a framework for explaining evolutionary changes in brain size. Journal ofHuman Evolution 57, 392–400. doi:10.1016/j.jhevol.2009.04.009
  • Iwaniuk, A. N., and Arnold, K. E. (2004). Is cooperative breeding associated with bigger brains? A comparative test in the Corvida (Passeriformes). Ethology 110, 203–220. doi:10.1111/j.1439-0310.2003.00957.x
  • Iwaniuk, A. N., and Nelson, J. E. (2002). Can endocranial volumes be used as reliable estimates of brain size in birds? Canadian Journal of Zoology 80, 16–23. doi:10.1139/z01-204
  • Iwaniuk, A. N., and Nelson, J. E. (2003). Developmental differences are correlated with relative brain size in birds: a comparative analysis. Canadian Journal of Zoology 81, 1913–1928. doi:10.1139/z03-190
  • Iwaniuk, A. N., Dean, K. M., and Nelson, J. E. (2004a). A mosaic pattern characterizes the evolution of the avian brain. Proceedings of the Royal Society—B. Biological Sciences 271, S148-S151. doi:10.1098/rsbl.2003.0127
  • Iwaniuk, A. N., Nelson, J. E., James, H. F., and Olson, S. L. (2004b). A comparative test of the correlated evolution of flightlessness and relative brain size in birds. Journal of Zoology 263, 317–327. doi:10.1017/S0952836904005308
  • Iwaniuk, A. N., Dean, K. M., and Nelson, J. E. (2005). Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain, Behavior and Evolution 65, 40–59. doi:10.1159/000081110
  • Jolicoeur, P. (1973). Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: a sampling experiment. Journal of the American Statistical Association 68, 866–871. doi:10.1080/01621459.1973.10481438
  • Jønsson, K. A., Bowie, R. C. K., Nylander, J. A. A., Christidis, L., Norman, J. A., and Fjeldså, J. (2010a). Biogeographical history of cuckoo-shrikes (Aves: Passeriformes): transoceanic colonization of Africa from Australo-Papua. Journal of Biogeography 37, 1767–1781. doi:10.1111/j.1365-2699.2010.02328.x
  • Jønsson, K. A., Bowie, R. C. K., Moyle, R. G., Christidis, L., Norman, J. A., Benz, B. W., and Fjeldså, J. (2010b). Historical biogeography of an -Indo-Pacific passerine bird family (Pachycephalidae): different colonization patterns in the Indonesian and Melanesian archipelagos. Journal of Biogeography 37, 245–257. doi:10.1111/j.1365-2699.2009.02220.x
  • Kark, S., Iwaniuk, A., Schalimtzek, A., and Banker, E. (2007). Living in the city: can anyone become an ‘urban exploiter’? Journal of Biogeography 34, 638–651. doi:10.1111/j.1365-2699.2006.01638.x
  • Kearns, A. M., Joseph, L., and Cook, L. G. (2013). A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies. Molecular Phylogenetics and Evolution 66, 941–952. doi:10.1016/j.ympev.2012.11.020
  • Kennedy, M., and Page, R. D. M. (2002). Seabird supertrees: combining partial estimates of procellariiform phylogeny. Auk 119, 88–108.
  • Kennedy, M., Valle, C. A., and Spencer, H. G. (2009). The phylogenetic position of the Galapagos Cormorant. Molecular Phylogenetics and Evolution 53, 94–98. doi:10.1016/j.ympev.2009.06.002
  • Kusmierski, R., Borgia, G., Uy, A., and Crozier, R. H. (1997). Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint. Proceedings of the Royal Society—B. Biological Sciences 264, 307–313. doi:10.1098/rspb.1997.0044
  • Lefebvre, L. (2011). Taxonomic counts of cognition in the wild. Biology Letters 7, 631–633. doi:10.1098/rsbl.2010.0556
  • Lerner, H. R. L., and Mindell, D. P. (2005). Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution 37, 327–346. doi:10.1016/j.ympev.2005.04.010
  • Madden, J. (2001). Sex, bowers and brains. Proceedings of the Royal Society—B. Biological Sciences 268, 833–838. doi:10.1098/rspb.2000.1425
  • Maddison, W. P., and Maddison, D. R. (2011). Mesquite: A Modular System for Evolutionary Analysis. Version 2.75. Available at http://mesquiteproject.org [Verified 9 November 2013].
  • Maklakov, A. A., Immler, S., Gonzalez-Voyer, A., Ronn, J., and Kolm, N. (2011). Brains and the city: big-brained passerine birds succeed in urban environments. Biology Letters 7, 730–732. doi:10.1098/rsbl.2011.0341
  • Marchant, S., and Higgins, P. J. (Eds) (1990). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 1. Ratites to Ducks.’ (Oxford University Press: Melbourne.)
  • Marchant, S., and Higgins, P. J. (Eds) (1993) ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 2. Raptors to lapwings.’ (Oxford University Press: Melbourne.)
  • McCracken, K. G., and Sheldon, F. H. (1998). Molecular and osteological heron phylogenies: sources of incongruence. Auk 115, 127–141. doi:10.2307/4089118
  • Midford, P. E., Garland, T. H., and Maddison, W. (2008). PDAP:PDTREE package for Mesquite, v1.12. Available at http://mesquiteproject.org/pdap_mesquite/ [Verified 10 April 2013].
  • Moussus, J.-P., Clavel, J., Jiguet, F., and Julliard, R. (2011). Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998. doi:10.1111/j.1600-0706.2010.18955.x
  • Moyle, R. G. (2006). A molecular phylogeny of kingfishers (Alcedinidae) with insights into early biogeographic history. Auk 123, 487–499. doi:10.1642/0004-8038(2006)123[487:AMPOKA]2.0.CO;2
  • Nealen, P. M., and Ricklefs, R. E. (2001). Early diversification of the avian brain: body relationship. Journal of Zoology 253, 391–404. doi:10.1017/S095283690100036X
  • Nyári, A. S., and Joseph, L. (2011). Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and the historical development of Australo-Papuan bird communities. Emu 111, 202–211. doi:10.1071/MU10047
  • Ovenden, J. R., Mackinlay, A. G., and Crozier, R. H. (1987). Systematics and mitochondrial genome evolution of Australian rosellas (Aves: Platycercidae). Molecular Biology and Evolution 4, 526–543.
  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 877–884. doi:10.1038/44766
  • Pagel, M. D., and Harvey, P. H. (1988). The taxon-level problem in the evolution of mammalian brain size: facts and artifacts. American Naturalist 132, 344–359. doi:10.1086/284857
  • Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290. doi:10.1093/bioinformatics/btg412
  • Pereira, S. L., Johnson, K. P., Clayton, D. H., and Baker, A. J. (2007). Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleogene. Systematic Biology 56, 656–672. doi:10.1080/10635150701549672
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Development Core Team (2013). nlme: Linear and Nonlinear Mixed Effects Models. R package Version 3.1-109. (The R Project for Statistical Computing: Vienna, Austria.) Available at http://www.r-project.org/ [Verified 8 February 2013].
  • Pravosudov, V. V., Sanford, K., and Hahn, T. P. (2007). On the evolution of brain size in relation to migratory behaviour in birds. Animal Behaviour 73, 535–539. doi:10.1016/j.anbehav.2006.10.005
  • Raerinne, J. P. (2013). Explanatory, predictive, and heuristic roles of allometries and scaling relationships. Bioscience 63, 191–198. doi:10.1525/bio.2013.63.3.7
  • Reif, J., Böhning-Gaese, K., Flade, M., Schwarz, J., and Schwager, M. (2011). Population trends of birds across the iron curtain: brain matters. Biological Conservation 144, 2524–2533.
  • Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223. doi:10.1111/j.2041-210X.2011.00169.x
  • Ricklefs, R. E. (2004). The cognitive face of avian life histories—the 2003 Margaret Morse Nice Lecture. Wilson Bulletin 116, 119–133. doi:10.1676/04-054
  • Schuck-Paim, C., Alonso, W. J., and Ottoni, E. B. (2008). Cognition in an ever-changing world: climatic variability is associated with brain size in Neotropical parrots. Brain, Behavior and Evolution 71, 200–215. doi:10.1159/000119710
  • Sol, D., Timmermans, S., and Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour 63, 495–502. doi:10.1006/anbe.2001.1953
  • Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., and Lefebvre, L. (2005a). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America 102, 5460–5465. doi:10.1073/pnas.0408145102
  • Sol, D., Lefebvre, K., and Rodriguez-Teijeiro, J. D. (2005b). Brain size, innovative propensity and migratory behaviour in temperate Palearctic birds. Proceedings of the Royal Society—B. Biological Sciences 272, 1433–1441. doi:10.1098/rspb.2005.3099
  • Sol, D., Székely, T., Liker, A., and Lefebvre, L. (2007). Big-brained birds survive better in nature. Proceedings of the Royal Society—B. Biological Sciences 274, 763–769. doi:10.1098/rspb.2006.3765
  • Sol, D., Bacher, S., Reader, S. M., and Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172, S63–S71. doi:10.1086/588304
  • Sol, D., Garcia, N., Iwaniuk, A., Davis, K., Meade, A., Boyle, W. A., and Székely, T. (2010). Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617. doi:10.1371/journal.pone.0009617
  • Sorenson, M. D., and Payne, R. B. (2005). A molecular genetic analysis of cuckoo phylogeny. In ‘The Cuckoos’. (Ed. R. B. Payne.) pp. 68–94. (Oxford University Press: Oxford, UK.)
  • Sorenson, M. D., Balakrishnan, C. N., and Payne, R. B. (2004). Clade-limited colonization in brood-parasitic finches (Vidua spp.). Systematic Biology 53, 140–153. doi:10.1080/10635150490265021
  • StatSoft Inc. (2012). ‘Statistica 11.’ (StatSoft Inc.: Tulsa.)
  • Thomas, G. H., Wills, M. A., and Szekely, T. (2004). A supertree approach to shorebird phylogeny. BMC Evolutionary Biology 4, 28. doi:10.1186/1471-2148-4-28
  • Vall-llosera, M., and Sol, D. (2009). A global risk assessment for the success of bird introductions. Journal of Applied Ecology 46, 787–795. doi:10.1111/j.1365-2664.2009.01674.x
  • White, N. E., Phillips, M. J., Gilbert, M. T. P., Alfaro-Nunez, A., Willerslev, E., Mawson, P. R., Spencer, P. B. S., and Bunce, M. (2011). The evolutionary history of cockatoos (Aves: Psittaciformes: Cacatuidae). Molecular Phylogenetics and Evolution 59, 615–622. doi: 10.1016/j.ympev.2011.03.011
  • Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., and Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, e325. doi:10.1371/journal.pbio.0060325
  • Wink, M., El-Sayed, A.-A., Sauer-Gürth, H., and Gonzalez, J. (2009). Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cytochrome b and the nuclear RAG-1 gene. Ardea 97, 581–591. doi:10.5253/078.097.0425
  • Winkler, H., Leisler, B., and Bernroider, G. (2004). Ecological constraints on the evolution of avian brains. Journal of Ornithology 145, 238–244. doi:10.1007/s10336-004-0040-y
  • Wright, T. F., Schirtzinger, E. E., Matsumoto, T., Eberhard, J. R., Graves, G. R., Sanchez, J. J., Capelli, S., Muller, H., Scharpegge, J., Chambers, G. K., and Fleischer, R. C. (2008). A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Molecular Biology and Evolution 25, 2141–2156. doi: 10.1093/molbev/msn160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.