15
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Beta-adrenergic inhibition of rabbit lens anterior-surface K+ conductance

, , &
Pages 95-105 | Published online: 02 Jul 2009

References

  • Kuwabara T. The maturation of the lens cells: A morpho-logic study. Exp Eye Res. 1975;20:427–443.
  • Rae JL, Kuszak JR. The electrical coupling of epithelium and fibers in the frog lens. Exp Eye Res. 1983;36:317–326.
  • Goodenough DA. The crystalline lens: A system networked by gap junctional intercellular communication. Semin Cell Biol. 1992;3:49–58.
  • Candia OA, Bentley PJ, Mills CD, Toyofuku H. Asymmet-rical distribution of the potential difference in the toad lens. Nature. 1970;227:852–853.
  • Candia OA, Bentley PJ, Mills CD. Short-circuit current and active Na transport across isolated lens of the toad. Am J PhysioL 1971;220:558–564.
  • Candia OA. Microelectrode and short-circuiting techniques for the study of ion transport in the lens. Exp Eye Res. 1973;15:219–223.
  • Duncan G, Delamere NA, Paterson CA, Neville MC. Con-tribution of an electrogenic pump to the electrical charac-teristics of frog lens membranes. Exp Eye Res. 1980; 30:105–107.
  • Alvarez LJ, Wolosin JM, Candia OA. Contribution from a pH- and tonicity-sensitive K+ conductance to toad translens short-circuit current. Exp Eye Res. 1991;52:283–292.
  • Alvarez LJ, Candia OA, Zamudio AC. (1995) Acetylcholinemodulation of the short-circuit current across the rabbit lens. Exp Eye Res. 1995;61: 129–140.
  • Alvarez LJ, Candia OA, Zamudio AC. Effects of Ca2+ on rabbit translens short-circuit current; evidence of a Ca2+-inhibitable K+ conductance. Curr Eye Res. 1996; 15:1198–1207.
  • Candia OA, Zamudio AC. Regional distribution of the Na+ and K+ currents around the crystalline lens of rabbit. Am J Physiol Cell PhysioL 2002;282:C252–C262.
  • Ireland ME, Shanbom S. Lens beta-adrenergic receptors. Functional coupling to adenylate cyclase and photoaffinity labeling. Invest Ophthalmol Vis Sci. 1991;32:541–548.
  • Osborne NN. Agonist-induced stimulation of cAMP in the lens: Presence of functional beta-receptors. Exp Eye Res. 1991;52:105–106.
  • Alvarez LJ, Candia OA, Polikoff LA. Beta-adrenergic stimulation of Na+-K+-20- cotransport activity in the rabbit lens. Exp Eye Res. 2003;76(1):61–70.
  • Turner HC, Alvarez LJ, Bildin VN, Candia OA. Immunolo-calization of Na-K-ATPase, Na-K-Cl and Na-glucose cotransporters in rabbit conjunctival epithelium. Curr Eye Res. 2000;21:843–850.
  • Grammer JB, Zeng X, Bosch RF, Kuhlkamp V. Atrial L-type Ca2+-channel, beta-adrenorecptor, and 5-hydrox-ytryptamine type 4 receptor mRNAs in human atrial fibrillation. Basic Res CardioL 2001;96:82–90.
  • Lo WK, Harding CV. Tight junctions in the lens epithelia of human and frog: Freeze-fracture and protein tracer studies. Invest Ophthalmol Vis Sci. 1983;24:396–402.
  • Elena PP, Kosina-Boix M, Moulin G, Lapalus P. Autoradi-ographic localization of beta-adrenergic receptors in rabbit eye. Invest Ophthalmol Vis Sci. 1987;28:1436–1441.
  • Ireland ME, Jacks LA. Initial characterization of lens beta-adrenergic receptors. Invest Ophthalmol Vis Sci. 1989; 30:2190–2194.
  • Voaden MJ. A chalone in the rabbit lens? Exp Eye Res. 1968;7:326–331.
  • von Sallmarm L, Grimes P. Isoproterenol-induced changes of cell proliferation in rat lens epithelium. Invest Ophthal-mol. 1971;10:943–947.
  • Alvarez LJ, Candia OA, Turner HC, Polikoff LA. Local-ization of a Na+-K+-20- cotransporter in the rabbit lens. Exp Eye Res. 2001;73:669–680.
  • Candia OA, Zamudio AC, Polikoff LA, Alvarez U. Distribution of acetylcholine-sensitive currents around the rabbit crystalline lens. Exp Eye Res. 2002;74:769–776.
  • Rae JL, Shepard AR. Inwardly rectifying potassium chan-nels in lens epithelium are from the IRK1 (Kir 2.1) family. Exp Eye Res. 1998;66:347–359.
  • Llobet A, Gasull X, Pales J, Marti E, Gual A. Identification of Kir2.1 channel activity in cultured trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2001;42: 2371–2379.
  • Wischmeyer E, Karschin A. Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K+ channels by direct protein kinase A-mediated phosphorylation. Proc Nall Acad Sci USA. 1996;93:5819–5823.
  • Enyeart JJ, Mlinar B, Enyeart JA. Adrenocorticotropic hormone and cAMP inhibit noninactivating K+ current in adrenocortical cells by an A-kinase-independent mecha-nism requiring ATP hydrolysis. J Gen PhysioL 1996;108: 251–264.
  • Evans AR, Vasko MR, Nicol GD. The cAMP transduction cascade mediates the PGE2-induced inhibition of potas-sium currents in rat sensory neurones. J PhysioL 1999; 516:163–178.
  • Cooper K, Rae JL, Dewey J. Inwardly rectifying potassium current in mammalian lens epithelial cells. Am J PhysioL 1991;261:C115–C123.
  • Collison DJ, Duncan G. Regional differences in functional receptor distribution and calcium mobilization in the intact human lens. Invest Ophthalmol Vis Sci. 2001;42:2355–63.
  • Cooper RU, Constable IJ, Davidson L. Aqueous humor cat-echolamine s. Curr Eye Res. 1984;3:809–813.
  • Trope GE, Sole M, Aedy L, Madapallimattam A. Levels of norepinephrine, epinephrine, dopamine, serotonin and N-acetylserotonin in aqueous humour. Can J Ophthalmol. 1987;22:152–154.
  • Autzen T, Larsen, FE, Christensen NJ. Human aqueous humor catecholamines. Curr Eye Res. 1985;4:1269–1271.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.