42
Views
18
CrossRef citations to date
0
Altmetric
Research Article

A potential role for CXCR3 chemokines in the response to ocular HSV infection

&
Pages 137-150 | Published online: 02 Jul 2009

References

  • Karpus WJ, McRae BL, Strieter RM, Kunkel SL, Miller SD. An important role for the chemokine macrophage inflammatory protein-1 alpha in the patho-genesis of the T cell-mediated autoimmune disease, experimental autoimmune encephalomyelitis. Journal of Immunology. 1995;155:5003–5010.
  • Steinhauser ML, Hogaboam CM, Matsukawa A, Lukacs NW, Strieter RM, Kunkel SL. Chemokine C10 promotes disease resolution and survival in an experimental model of bacterial sepsis. Infection and Immunity. 2000;68: 6108–6114.
  • Kunkel SL, Lukacs NW, Strieter RM, Chensue SW The role of chemokines in the immunopathology of pulmonary disease. 9:339–355.
  • Godessart N, Kunkel SL. Chemokines in autoimmune disease. Current Opinion in Immunology. 2001 ;13 :670–675.
  • Anthony DC, Blond D, Dempster R, Perry VH. Chemokine targets in acute brain injury and disease. Progress in Brain Research. 2001;132:507–524.
  • Xia MQ, Hyman BT. Chemokines/chemokine receptors in the central nervous system and Alzheimer's disease. Journal of Neurovirology. 1999;5:32–41.
  • Glass WG, Chen BP, Liu MT, Lane TE. Mouse hepatitis virus infection of the central nervous system: Chemokine-mediated regulation of host defense and disease. Viral Immunology. 2002;15:261–272.
  • Ransohoff RM, Wei T, Pavelko KD, Lee JC, Murray PD, Rodriguez M. Chemokine expression in the central nervous system of mice with a viral disease resembling multiple sclerosis: Roles of CD4+ and CD8+ T cells and viral persistence. Journal of Virology. 2002;76:2217–2224.
  • Chen SH, Oakes JE, Lausch RN. Synergistic anti-HSV effect of tumor necrosis factor alpha and interferon gamma in human corneal fibroblasts is associated with interferon beta induction. Antiviral Research. 1993;22: 15–29.
  • Can DJ, Noisakran S, Halford WP, Lukacs N, Asensio V, Campbell IL. Cytokine and chemokine production in HSV-1 latently infected trigeminal ganglion cell cultures: Effects of hyperthermic stress. Journal of Neuroim-munology. 1998;85:111–121.
  • Yan XT, Zhuang M, Oakes JE, Lausch RN. Autocrine action of IL-10 suppresses proinflammatory mediators and inflammation in the HSV-1-infected cornea. Journal of Leukocyte Biology. 2001;69:149–157.
  • Cantin EM, Hinton DR, Chen J, Openshaw H. Gamma interferon expression during acute and latent nervous system infection by herpes simplex virus type 1. Journal of Virology. 1995;69:4898–4905.
  • Liu T, Khanna KM, Carriere BN, Hendricks RL. Gamma interferon can prevent herpes simplex virus type 1 reac-tivation from latency in sensory neurons. Journal of Virology. 2001;75:11178–11184.
  • Stumpf TH, Case R, Shimeld C, Easty DL, Hill TJ. Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. The Journal of General Virology. 2002;83: 1579–1590.
  • Hendricks RL, Tumpey TM, Finnegan A. IFN-gamma and IL-2 are protective in the skin but pathologic in the corneas of HSV-1-infected mice. Journal of Immunology. 1992;149: 3023–3028.
  • Hendricks RL. An immunologist's view of herpes simplex keratitis: Thygeson Lecture 1996, presented at the Ocular Microbiology and Immunology Group meeting, October 26,1996. Cornea. 1997;16:503–506.
  • Deshpande SP, Zheng M, Daheshia M, Rouse BT. Pathogenesis of herpes simplex virus-induced ocular immunoinflammatory lesions in B-cell-deficient mice. Journal of Virology. 2000;74:3517–3524.
  • Gangappa S, Deshpande SP, Rouse BT. Bystander activa-tion of CD4(+) T cells can represent an exclusive means of immunopathology in a virus infection. European Journal of Immunology. 1999;29: 3674–3682.
  • Gangappa S, Deshpande SP, Rouse BT. Bystander activation of CD4+ T cells accounts for herpetic ocular lesions. Investigative Ophthalmology & Visual Science. 2000;41: 453–459.
  • Eo SK, Lee S, Chun S, Rouse BT. Modulation of immu-nity against herpes simplex virus infection via mucosal genetic transfer of plasmid DNA encoding chemokines. Journal of Virology. 2001;75:569–578.
  • Eo SK, Lee S, Kumaraguru U BT Rouse, Immunopoten-tiation of DNA vaccine against herpes simplex virus via co-delivery of plasmid DNA expressing CCR7 ligands. Vaccine. 2001;19:4685–4693.
  • Sin J, Kim JJ, Pachuk C, Satishchandran C, Weiner DB. DNA vaccines encoding interleukin-8 and RANTES enhance antigen-specific Thltype CD4(+) T-cell-mediated protective immunity against herpes simplex virus type 2 in vivo. Journal of Virology. 2000;74: 11173–11180.
  • Sin JI, Kim JJ, Arnold RL, Shroff KE, McCallus D, Pachuk C, McElhiney SP, Wolf MW, Pompa de Bruin SJ, Higgins TJ, Ciccarelli RB, Weiner DB. IL-12 gene as a DNA vaccine adjuvant in a herpes mouse model: IL-12 enhances Thltype CD4+ T cell-mediated protective immunity against herpes simplex virus-2 challenge. Journal of Immunology. 1999;162: 2912–2921.
  • Cascieri MA, Springer MS. The chemokine/chemokine-receptor family: Potential and progress for therapeutic intervention. Current Opinion in Chemical Biology. 2000;4:420–427.
  • Luster AD. Chemokines-chemotactic cytokines that mediate inflammation. The New England Journal of aMedicine. 1998;338:436115.
  • Mantovani A. Chemokines: Introduction and overview. Chemical Immunology. 1999;72:1–6.
  • Onuffer JR, Horuk. Chemokines, chemokine receptors and small-molecule antagonists: recent developments. Trends in Pharmacological Sciences. 2002;23:459.
  • Sozzani S, Allavena P, Vecchi A, Van Damme J, Mantovani A. Chemokine receptors: Interaction with HIV-1 and viral-encoded chemokines. Pharmaceutica Acta Helvetiae. 2000;74: 305–312.
  • Elhofy A, Kennedy KJ, Fife BT, Karpus WJ. Regula-tion of experimental autoimmune encephalomyelitis by chemokines and chemokine receptors. Immunologic Research. 2002;25:167–175.
  • Bajetto A, Bonavia R, Barbero S, Florio T, Schettini G. Chemokines and their receptors in the central nervous system. Frontiers in Neuroendocrinology. 2001;22:147–184.
  • De Groot CJ, Woodroofe MN. The role of chemokines and chemokine receptors in CNS inflammation. Progress in Brain Research. 2001;132:533–544.
  • Bacon KB, Harrison JK. Chemokines and their recep-tors in neurobiology: Perspectives in physiology and homeostasis. Journal of Neuroimmunology. 2000;104: 92–97.
  • Zhang GX, Baker CM, Kolson DL, Rostami AM. Chemokines and chemokine receptors in the pathogene-sis of multiple sclerosis. Multiple Sclerosis. 2000;6:3–13.
  • Glabinski AR, Ransohoff RM. Chemokines and chemokine receptors in CNS pathology. Journal of Neurovirology. 1999;5:3–12.
  • Mennicken F, Maki R, De Souza EB, Quirion R. Chemokines and chemokine receptors in the CNS: A pos-sible role in neuroinflammation and patterning. Trends in Pharmacological Sciences. 1999;20:73–78.
  • Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. Journal of Neu-roscience Research. 2002;69:94–103.
  • Mantovani A, Locati M, Vecchi A, Sozzani S, Allavena P. Decoy receptors: A strategy to regulate inflammatory cytokines and chemokines. Trends in Immunology. 2001;22:328–336.
  • Allavena P, Luini W, Bonecchi R, D'Amico G, Bianchi G, Longoni D, Vecchi A, Mantovani A, Sozzani S. Chemokines and chemokine receptors in the regulation of dendritic cell trafficking. Chemical Immunology. 1999;72:69–85.
  • D'Ambrosio D, Sinigaglia F. Chemokines and their recep-tors: Trafficking cues for Thl and Th2 cells. European Cytokine Network. 2000;11:495–496.
  • Sallusto F, Lanzavecchia A, Mackay CR. Chemokines and chemokine receptors in T-cell priming and Thl/Th2-mediated responses. Immunology Today. 1998;19: 568–574.
  • He J, Chen Y, Farzan M, Choe H, Ohagen A, Gartner S, Busciglio J, Yang X, Hofmann W, Newman W, Mackay CR, Sodroski J, Gabuzda D. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature. 1997;385: 645–649.
  • Habasque C, Aubry F, Jegou B, Samson M. Study of the HIV-1 receptors CD4, CXCR4, CCR5 and CCR3 in the human and rat testis. Molecular Human Reproduction. 2002;8:419–425.
  • Han Y, Wang J, He T, Ransohoff RM. TNF-alpha down-regulates CXCR4 expression in primary murine astro-cytes. Brain Research. 2001;888:1–10.
  • Popik W, Alce TM, Au WC. Human immunodeficiency virus type 1 uses lipid raft-colocalized CD4 and chemokine receptors for productive entry into CD4(+) T cells. Journal of Virology. 2002;76: 4709–4722.
  • Bridgeman A, Stevenson PG, Simas JP, Efstathiou S. A secreted chemokine binding protein encoded by murine gammaherpesvirus-68 is necessary for the establishment of a normal latent load. The Journal of Experimental Medicine. 2001;194:301–312.
  • Sarawar SR, Lee BJ, Anderson M, Teng YC, Zuberi R, Von Gesjen S. Chemokine induction and leukocyte trafficking to the lungs during murine gammaherpesvirus 68 (MHV-68) infection. Virology. 2002;293: 54–62.
  • Mocarski ES. Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion. Trends in Micro-biology. 2002;10:332–339.
  • Saederup N, Mocarski ES. Fatal attraction: cytome-galovirus-encoded chemokine homologs. Current Topics in Microbiology and Immunology. 2002;269:235–256.
  • Lesokhin AM, Delgado Lopez F, Horwitz MS. Inhibition of chemokine expression by adenovirus early region three (E3) genes. Journal of Virology. 2002;76:8236–8243.
  • Bowen GP, Borgland SL, Lam M, Libermarm TA, Wong NC, Muruve DA. Adenovirus vector-induced inflamma-tion: Capsid-dependent induction of the C-C chemokine RANTES requires NF-kappa B. Human Gene Therapy. 2002;13:367–379.
  • Liu MT, Lane TE. Chemokine expression and viral infec-tion of the central nervous system: Regulation of host defense and neuropathology. Immunologic Research. 2001;24:111–119.
  • Khabar KS, Polyak SJ. Hepatitis C Virus-Host Interac-tions: The NS5A Protein and the Interferon/Chemokine Systems. Journal of Interferon & Cytokine Research: The Official Journal of the International Society For Interferon and Cytokine Research. 2002;22: 1005–1012.
  • Bouley DM, Kanangat S, Wire W, Rouse BT. Character-ization of herpes simplex virus type-1 infection and herpetic stromal keratitis development in IFN-gamma knockout mice. Journal of Immunology. 1995;155:3964–3971.
  • Zhao ZS, Granucci F, Yeh L, Schaffer PA, Cantor H. Mol-ecular mimicry by herpes simplex virus-type 1: Autoim-mune disease after viral infection. Science. 1998;279: 1344–1347.
  • Doymaz MZ, Foster CM, Destephano D, Rouse BT. MHCII-restricted, CD4+ cytotoxic T lymphocytes specific for herpes simplex virus-1: Implications for the development of herpetic stromal keratitis in mice. Clinical Immunol-ogy and Immunopathology. 1991;61:398–409.
  • Thomas J, Rouse BT. Immunopathology of herpetic stromal keratitis: Discordance in CD4+ T cell function between euthymic host and reconstituted SCID recipients. Journal of Immunology. 1998;160:3965–3970.
  • Armunziato F, Cosmi L, Galli G, Beltrame C, Manetti R, Romagnani S, Maggi E. Assessment of chemokine receptor expression by human Thl and Th2 cells in vitro and in vivo. Journal of Leukocyte Biology. 1999;65:691–699.
  • Armunziato F, Galli G, Romagnani P, Cosmi L, Manetti R, Maggi E, Romagnani S. Chemokine receptors and other surface molecules preferentially associated with human Thl or Th2 cells. Microbes and Infection/Institut Pasteur. 1999;1: 103–106.
  • Romagnani P, Annunziato F, Piccinni MP, Maggi E, Romagnani S. Thl/Th2 cells, their associated molecules and role in pathophysiology. European Cytokine Network. 2000;11: 510–511.
  • D'Ambrosio D, Iellem A, Bonecchi R, Mazzeo D, Sozzani S, Mantovani A, Sinigaglia F. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. Journal of Immunology. 1998;161:5111–5115.
  • Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A, Sinigaglia F. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (This) and Th2s. The Journal of Experimental Medicine. 1998;187: 129–134.
  • Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. Flexi-ble programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. The Journal of Experimental Medicine. 1998;187:875–883.
  • Sallusto F, Palermo B, Hoy A, Lanzavecchia A. The roleof chemokine receptors in directing traffic of naive, type 1 and type 2 T cells. Current Topics in Microbiology and Immunology. 1999;246:123-128; discussion 129.
  • Mitchell WJ, Gressens P, Martin JR, DeSanto R. Herpes simplex virus type 1 DNA persistence, progressive disease and transgenic immediate early gene promoter activity in chronic corneal infections in mice. J Gen Virol. 1994;75:1201–1210.
  • Halford WP, Gebhardt BM, Can DJ. Persistent cytokine expression in trigeminal ganglion latently infected with herpes simplex virus type 1. Journal of Immunology. 1996;157: 3542–3549.
  • Belperio JA, Keane MP, Burdick MD, Lynch JP, Xue YY, Li K, Ross DJ, Strieter RM. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. Journal of Immunology. 2002; 169:1037–1049.
  • Aust G, Sittig D, Steinert M, Lamesch P, Lohmann T. Graves' disease is associated with an altered CXCR3 and CCR5 expression in thyroid-derived compared to peri-pheral blood lymphocytes. Clinical and Experimental Immunology. 2002;127: 479–485.
  • Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, Qin S, Lanzavecchia A. Rapid and coordi-nated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunol-ogy. 1998;28:2760–2769.
  • Jarrossay D, Napolitani G, Colonna M, Sallusto F, Lanzavecchia A. Specialization and complementarity in microbial molecule recognition by human myeloid and plasmacytoid dendritic cells. European Journal of Immunology. 2001;31:3388–3393.
  • Jenh CH, Cox MA, Kaminski H, Zhang M, Byrnes H, Fine J, Lundell D, Chou CC, Narula SK, Zavodny PJ. Cutting edge: Species specificity of the CC chemokine 6Ckine signaling through the CXC chemokine receptor CXCR3: Human 6Ckine is not a ligand for the human or mouse CXCR3 receptors. Journal of Immunology. 1999;162:3765–3769.
  • Dekaris I, Zhu SN, Dana MR. TNF-alpha regulates corneal Langerhans cell migration. Journal of Immunol-ogy. 1999;162:4235–4239.
  • Hamilton NH, Banyer JL, Hapel AJ, Mahalingam S, Ramsay AJ, Ramshaw IA, Thomson SA. IFN-gamma reg-ulates murine interferon-inducible T cell alpha chemokine (I-TAC) expression in dendritic cell lines and during experimental autoimmune encephalomyelitis (EAE). Scandinavian Journal of Immunology. 2002;55:171–177.
  • Pashenkov M, Huang YM, Kostulas V, Haglund M, Soderstrom M, Link H. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain. 2001;124:480–492.
  • Serafini B, Columba Cabezas S, Di Rosa F, Aloisi F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. American Journal of Pathology. 2000;157:1991–2002.
  • Annunziato F, Cosmi L, Liotta F, Lazzeri E, Manetti R, Vanini V, Romagnani P, Maggi E, Romagnani S. Phenotype, localization, and mechanism of suppression of CD4(+)CD25(+) human thymocytes. The Journal of Experimental Medicine. 2002;196: 379–387.
  • Sallusto F, Kremmer E, Palermo B, Hoy A, Ponath P, Qin S, Forster R, Lipp M, Lanzavecchia A. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. European Journal of Immunology. 1999;29:2037–2045.
  • McGuirk P, Mills K. Pathogen-specific regulatory T cells provoke a shift in the Thl/Th2 paradigm in immunity to infectious diseases. Trends in Immunology. 2002;23:450.
  • Cantin E, Tanamachi B, Openshaw H, Mann J, Clarke K. Gamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. Journal of Virology. 1999;73: 5196–5200.
  • Cantin E, Tanamachi B, Openshaw H. Role for gamma interferon in control of herpes simplex virus type 1 reac-tivation. Journal of Virology. 1999;73: 3418–3423.
  • Holterman AX, Rogers K, Edelmarm K, Koelle DM, Corey L, Wilson CB. An important role for major histo-compatibility complex class I-restricted T cells, and a limited role for gamma interferon, in protection of mice against lethal herpes simplex virus infection. Journal of Virology. 1999;73:2058–2063.
  • Soto H, Wang W, Strieter RM, Copeland NG, Gilbert DJ, Jenkins NA, Hedrick J, Zlotnik A. The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:8205–8210.
  • Kim CH, Broxmeyer HE. SLC/exodus2/6Ckine/TCA4 induces chemotaxis of hematopoietic progenitor cells: Differential activity of ligands of CCR7, CXCR3, or CXCR4 in chemotaxis vs. suppression of progenitor pro-liferation. Journal of Leukocyte Biology. 1999;66:455–461.
  • Rappert A, Biber K, Nolte C, Lipp M, Schubel A, Lu B, Gerard NP, Gerard C, Boddeke HW, Kettenmarm H. Sec-ondary lymphoid tissue chemokine (CCL21) activates CXCR3 to trigger a Cl- current and chemotaxis in murine microglia. Journal of Immunology. 2002;168:3221–3226.
  • Weng Y, Siciliano SJ, Waldburger KE, Sirotina Meisher A, Staruch MJ, Daugherty BL, Gould SL, Springer MS, DeMartino JA. Binding and functional properties of recombinant and endogenous CXCR3 chemokine recep-tors. The Journal of Biological Chemistry. 1998;273: 18288–182891.
  • Loetscher P, Pellegrino A, Gong JH, Mattioli I, Loetscher M, Bardi G, Baggiolini M, Clark Lewis I. The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. The Journal of Biological Chemistry. 2001;276: 2986–2991.
  • Sawtell NM, Thompson RL. Rapid in vivo reactivation of herpes simplex virus in latently infected murine gan- glionic neurons after transient hyperthermia. Journal of Virology. 1992;66:2150–2156.
  • Hensbergen PJ, Van der Raaij Helmer EM, Dijkman R, Van der Schors RC, Werner Felmayer G, Boorsma DM, Scheper RJ, Willemze R, Tensen CP Processing of natural and recombinant CXCR3-targeting chemokines and im-plications for biological activity. European Journal of Biochemistry. 2001;268:4992–4999.
  • Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R, Tensen CP Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. The Journal of Pathology. 2001;194:398–405.
  • Meyer M, Hensbergen PJ, Van der Raaij Helmer EM, Brandacher G, Margreiter R, Heufler C, Koch F, Narumi S, Werner ER, Colvin R, Luster AD, Tensen CP, Werner Felmayer G. Cross reactivity of three T cell attracting murine chemokines stimulating the CXC chemokine receptor CXCR3 and their induction in cultured cells and during allograft rejection. European Journal of Immunol-ogy. 2001;31:2521–2527.
  • Ghersa P, Gelati M, Colinge J, Feger G, Power C, Papoian R, Salmaggi A. MIG - differential gene expression in mouse brain endothelial cells. Neuroreport. 2002;13:9–14.
  • Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K. Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. The Journal of Experimental Medicine. 1998187:2009-2021.
  • Biber K, Dijkstra I, Trebst C, De Groot CJ, Ransohoff RM, Boddeke HIM Functional expression of CXCR3 in cultured mouse and human astrocytes and microglia. Neuroscience. 2002;112:487–497.
  • Teleshova N, Pashenkov M, Huang YM, Soderstrom M, Kivisakk P, Kostulas V, Haglund M, Link H. Multiple sclerosis and optic neuritis: CCR5 and CXCR3 express-ing T cells are augmented in blood and cerebrospinal fluid. Journal of Neurology. 2002;249 :723–729.
  • Sorensen TL, Trebst C, Kivisakk P, Klaege KL, Majmudar A, Ravid R, Lassmann H, Olsen DB, Strieter RM, Ransohoff RM, Sellebjerg F. Multiple sclerosis: A study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. Journal of Neuroim-munology. 2002;127: 59–68.
  • Goldberg SH, Van der Meer P, Hesselgesser J, Jailer S, Kolson DL, Albright AV, Gonzalez Scarano F, Lavi E. CXCR3 expression in human central nervous system diseases. Neuropathology and Applied Neurobiology. 2001;27:127–138.
  • Simpson JE, Newcombe J, Cuzner ML, Woodroofe MN. Expression of the interferon-gamma-inducible chemokines IP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropathology and Applied Neurobiology. 2000;26:133–142.
  • Sorensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C,Folcik VA, Qin S, Rottman J, Sellebjerg F, Strieter RM, Frederiksen JL, Ransohoff RM. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. The Journal of Clinical Investigation. 1999;103:807–815.
  • Balashov KE, Rottman JB, Weiner HL, Hancock WW. CCR5(+) and CXCR3(+) T cells are increased in multi-ple sclerosis and their ligands MIP-lalpha and IP-10 are expressed in demyelinating brain lesions. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:6873–6878.
  • Shadidi KR, Thompson KM, Henriksen JE, Natvig JB, Aarvak T. Association of antigen specificity and migra-tory capacity of memory T cells in rheumatoid arthritis. Scandinavian Journal of Immunology. 2002;55:274–283.
  • Kivisakk P, Trebst C, Liu Z, Tucky BH, Sorensen TL, Rudick RA, Mack M, Ransohoff RM. T-cells in the cere-brospinal fluid express a similar repertoire of inflamma-tory chemokine receptors in the absence or presence of CNS inflammation: Implications for CNS trafficking. Clinical and Experimental Immunology. 2002 ;129:510–518.
  • Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astro-cytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multi-ple sclerosis. Journal of the Neurological Sciences. 2002;202:13–23.
  • Arimilli S, Ferlin W, Solvason N, Deshpande S, Howard M, Mocci S. Chemokines in autoimmune diseases. Immunological Reviews. 2000;177:43–51.
  • Bradley LM, Asensio VC, Schioetz LK, Harbertson J, Krahl T, Patstone G, Woolf N, Campbell IL, Sarvetnick N. Islet-specific Thl, but not Th2, cells secrete multiple chemokines and promote rapid induction of autoimmune diabetes. Journal of Immunology. 1999;162: 2511–2520.
  • Cameron MJ, Arreaza GA, Grattan M, Meagher C, Sharif S, Burdick MD, Strieter RM, Cook DN, Delovitch TL. Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. Journal of Immunology. 2000;165: 1102–1110.
  • Dubois Laforgue D, Hendel H, Caillat Zucman S, Zagury JF, Winkler C, Boitard C, Timsit J. A common stromal cell-derived factor-1 chemokine gene variant is associated with the early onset of type 1 diabetes. Diabetes. 2001;50: 1211–1213.
  • Nicoletti F, Conget I, Di_Mauro M, Di_Marco R, Mazzarino MC, Bendtzen K, Messina A, Gomis R. Serum concentrations of the interferon-gamma-inducible chemokine IP-10/CXCL10 are augmented in both newly diagnosed Type I diabetes mellitus patients and subjects at risk of developing the disease. Diabetologia. 2002; 45:1107–1110.
  • Kakimi K, Lane TE, Wieland S, Asensio VC, Campbell IL, Chisari FV, Guidotti LG. Blocking chemokine res- ponsive to gamma-2/interferon (IFN)-gamma inducible protein and monokine induced by IFN-gamma activity in vivo reduces the pathogenetic but not the antiviral poten-tial of hepatitis B virus-specific cytotoxic T lymphocytes. The Journal of Experimental Medicine. 2001;194 : 1755–1766.
  • Tumpey TM, Chen SH, Oakes JE, Lausch RN. Neu-trophil-mediated suppression of virus replication after herpes simplex virus type 1 infection of the murine cornea. Journal of Virology. 1996;70:898–904.
  • Tang Q, Hendricks RL. Interferon gamma regulates platelet endothelial cell adhesion molecule 1 expression and neutrophil infiltration into herpes simplex virus-infected mouse corneas. The Journal of Experimental Medicine. 1996;184:1435–1447.
  • Daheshia M, Kanangat S, Rouse BT. Production of key molecules by ocular neutrophils early after herpetic infection of the cornea. Experimental Eye Research. 1998;67:619–624.
  • Deshpande S, Zheng M, Lee S, Banerjee K, Gangappa S, Kumaraguru U, Rouse BT. Bystander activation involving T lymphocytes in herpetic stromal keratitis. Journal of Immunology. 2001;167:2902–2910.
  • Newell CK, Martin S, Sendele D, Mercadal CM, Rouse BT. Herpes simplex virus-induced stromal keratitis: Role of T-lymphocyte subsets in immunopathology. Journal of Virology. 1989;63:769–775.
  • Thomas J, Gangappa S, Kanangat S, Rouse BT. On the essential involvement of neutrophils in the immunopatho-logic disease: herpetic stromal keratitis. Journal of Immunology. 1997;158:1383–1391.
  • Niemialtowski MG, Rouse BT. Predominance of Thl cells in ocular tissues during herpetic stromal keratitis. Journal of Immunology. 1992;149:3035–3039.
  • Doymaz MZ, Rouse BT. Herpetic stromal keratitis: an immunopathologic disease mediated by CD4+ T lympho-cytes. Investigative Ophthalmology & Visual Science. 1992;33:2165–2173.
  • Can DJ. Increased levels of IFN-gamma in the trige-minal ganglion correlate with protection against HSV-1-induced encephalitis following subcutaneous administration with androstenediol. Journal of Neuroim-munology. 1998;89:160–167.
  • Fenton RR, Molesworth Kenyon S, Oakes JE, Lausch RN. Linkage of IL-6 with neutrophil chemoattractant expression in virus-induced ocular inflammation. Inves-tigative Ophthalmology & Visual Science. 2002;43: 737–743.
  • Yan XT, Tumpey TM, Kunkel SL, Oakes JE, Lausch RN. Role of MIP-2 in neutrophil migration and tissue injury in the herpes simplex virus-1-infected cornea. Investiga-tive Ophthalmology & Visual Science. 1998;39: 1854–1862.
  • Tran MT, Lausch RN, Oakes JE. Substance P differen-tially stimulates IL-8 synthesis in human corneal epithe-lial cells. Investigative Ophthalmology & Visual Science. 2000;41: 3871–3877.
  • Tullo AB, Keen P, Blyth WA, Hill TJ, Easty DL. Corneal sensitivity and substance P in experimental herpes simplex keratitis in mice. Investigative Ophthalmology & Visual Science. 1983;24:596–598.
  • Biber K, Sauter A, Brouwer N, Copray SC, Boddeke Ischemia-induced neuronal expression of the microg-lia attracting chemokine Secondary Lymphoid-tissue Chemokine (SLC). Glia. 2001;34:121–133.
  • Warren P, Song W, Holle E, Holmes L, Wei Y, Li J, Wagner T, Yu X. Combined HSV-TK/GCV and secondary lymphoid tissue chemokine gene therapy inhibits tumor growth and elicits potent antitumor CTL response in tumor-bearing mice. Anticancer Research. 22:599–604.
  • Wildbaum G, Netzer N, Karin N. Plasmid DNA encoding IFN-gamma-inducible protein 10 redirects antigen-specific T cell polarization and suppresses experimental autoimmune encephalomyelitis. Journal of Immunology. 2002;168: 5885–5892.
  • LeBlanc RA, Pesnicak L, Cabral ES, Godleski M, Straus SE. Lack of interleukin-6 (IL-6) enhances susceptibility to infection but does not alter latency or reactivation of herpes simplex virus type 1 in IL-6 knockout mice. Journal of Virology. 1999;73: 8145–8151.
  • Can DJ, Campbell IL. Transgenic expression of inter-leukin-6 in the central nervous system confers protection against acute herpes simplex virus type-1 infection. Journal of Neurovirology. 1999;5 :449–457.
  • Kriesel JD, Ricigliano J, Spruance SL, Garza HH, Hill JM. Neuronal reactivation of herpes simplex virus may involve interleukin-6. Journal of Neurovirology. 1997;3: 441–448.
  • Shimeld C, Easty DL, Hill TJ. Reactivation of herpes simplex virus type 1 in the mouse trigeminal ganglion: an in vivo study of virus antigen and cytokines. Journal of Virology. 1999;73: 1767–1773.
  • Minami M, Kita M, Yan XQ, Yamamoto T, Iida T, Sekikawa K, Iwakura Y, Imanishi J. Role of IFN-gamma and tumor necrosis factor-alpha in herpes simplex virus type 1 infection. Journal of Interferon & Cytokine Re-search: The Official Journal of the International Society For Interferon and Cytokine Research. 2002;22:671–676.
  • Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL. CD8(+) T cells can block herpes simplex virus type 1 (HSV-1) reactivation from latency in sensory neurons. The Journal of Experimental Medicine. 2000;191 : 1459–1466.
  • Han X, Lundberg P, Tanamachi B, Openshaw H, Longmate J, Cantin E. Gender influences herpes simplex virus type 1 infection in normal and gamma interferon-mutant mice. Journal of Virology. 2001;75:3048–3052.
  • Whitacre CC, Reingold SC, O'Looney PA. A gender gap in autoimmunity. Science. 1999;283:1277–1278.
  • Kurashima K, Fujimura M, Myou S, Kasahara K, Tachibana H, Amemiya N, Ishiura Y, Onai N, Matsushima K, Nakao S. Effects of oral steroids on blood CXCR3+ and CCR4+ T cells in patients with bronchial asthma. American Journal of Respiratory and Critical Care Medicine: An Official Journal of the American Thoracic Society, Medical Section of the American Lung Associa-tion. 2001;164:754–758.
  • Kovithavongs T, Holtman WC, Dossetor JB. Effector cell activity in antibody-mediated cell-dependent immune lympholysis. I. Normal individuals. Journal of Immunol-ogy. 1974;113:1178–1183.
  • Santoli D, Trinchieri G, Zmijewski CM, Koprowski H. HLA-related control of spontaneous and antibody-dependent cell-mediated cytotoxic activity in humans. Journal of Immunology. 1976;117:765–770.
  • Pross HF, Baines MG. Studies of human natural killer cells. I. In vivo parameters affecting normal cytotoxic function. International Journal of Cancer. Journal Inter-national Du Cancer. 1982;29:383–390.
  • Mandeville R, Sombo FM, Rocheleau N. Natural cell-mediated cytotoxicity in normal human peripheral blood lymphocytes and its in vitro boosting with BCG. Cancer Immunology, Immunotherapy: Cii. 1983;15:17–22.
  • Giltay EJ, Fonk JC, von_Blomberg BM, Drexhage HA, Schalkwijk C, Gooren U. In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. The Journal of Clinical Endocrinology and Metabolism. 2000;85:1648–1657.
  • Ito A, Bebo BF, Matejuk A, Zamora A, Silverman M, Fyfe Johnson A, Offner H. Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. Journal of Immunology. 2001; 167:542–552.
  • Hesselgesser J, Horuk R. Chemokines and chemokine receptors in the brain, In: C. Hebert, Cemokines in Disease, Totowa, New Jersey. Humana Press, Inc.: 1999;295–312.
  • Keller Bruce AJ, Keeling JL, Keller JN, Huang FF, Camondola S, Mattson MP. Antiinflammatory effects of estrogen on microglial activation. Endocrinology. 2000;141:3646–3656.
  • Hu J, You S, Li W, Wang D, Nagpal ML, Mi Y, Liang P, Lin T. Expression and regulation of interferon-gamma-inducible protein 10 gene in rat Leydig cells. Endocrinol-ogy. 1998;139:3637–3645.
  • Voskuhl RR, Palaszynski K. Sex hormones in experi-mental autoimmune encephalomyelitis: Implications for multiple sclerosis. 2001;7:258–270.
  • Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A, Sacks S, Tyring S, Aoki FY, Slaoui M, Denis M, Vandepapeliere P, Dubin G, and the Glaxo-SmithKline Herpes Vaccine Efficacy Study Group. Gly-coprotein-D-Adjuvant Vaccine to Prevent Genital Herpes. N Engl J Med. 2002;347:1652–1661.
  • Cantin E, Chen J, Willey DE, Taylor JL, O'Brien WJ. Persistence of herpes simplex virus DNA in rabbit corneal cells. Invest Ophthalmol Vis Sci. 1992;33:2470–2475.
  • Cantin EM, Chen J, McNeill J, Willey DE, Openshaw H. Detection of herpes simplex virus DNA sequences in corneal transplant recipients by polymerase chain reaction assays. Current Eye Research. 1991;10 Supp1:15–21.
  • Gangappa S, Babu JS, Thomas J, Daheshia M, Rouse BT. Virus-induced immunoinflammatory lesions in the absence of viral antigen recognition. Journal of Immunol-ogy. 1998;161:4289–4300.
  • Openshaw H, McNeill JI, Lin XH, Niland J, Cantin EM. Herpes simplex virus DNA in normal corneas: Persis-tence without viral shedding from ganglia. Journal of Medical Virology. 1995;46:75–80.
  • Honess RW, Gompels UA, Harrell BG, Craxton M, Cameron KR, Staden R, Chang YN, Hayward GS. Devi-ations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. J Gen Virol. 1989;70: 837–855.
  • Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annual Review of Immunology. 2002;20: 709–760.
  • Krieg AM. The role of CpG motifs in innate immunity. Current Opinion in Immunology. 2000;12:35–43.
  • Krieg AM, Hartmann G, Yi AK. Mechanism of action of CpG DNA. Current Topics in Microbiology and Immunology. 2000;247:1–21.
  • Wagner H. Toll meets bacterial CpG-DNA. Immunity. 2001;14:499–502.
  • Wagner H, Lipford GB, Hacker H. The role of immunos-timulatory CpG-DNA in septic shock. Springer Seminars in Immunopathology. 2000;22:167–171.
  • Krug A, Towarowski A, Britsch S, Rothenfusser S, Hornung V, Bals R, Giese T, Engelmarm H, Endres S, Krieg AM, Hartmann G. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plas-macytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. European Journal of Immunology. 2001;31: 3026–3037.
  • Stan AC, Casares S, Brumeanu TD, Klinman DM, Bona CA. CpG motifs of DNA vaccines induce the expression of chemokines and MHC class II molecules on myocytes. European Journal of Immunology. 2001;31:301–310.
  • Takeshita S, Takeshita F, Haddad DE, Ishii KJ, Klinman DM. CpG oligodeoxynucleotides induce murine macro-phages to up-regulate chemokine mRNA expression. Cellular Immunology. 2000;206:101–106.
  • Brissette Storkus CS, Reynolds SM, Lepisto AJ, Hendricks RU. Identification of a novel macrophage population in the normal mouse corneal stroma. Inves-tigative Ophthalmology &Visual Science. 2002;43:2264–2271.
  • Zheng M, Klinman DM, Gierynska M, Rouse BT. DNA containing CpG motifs induces angiogenesis. Proceed-ings of the National Academy of Sciences of the United States of America. 2002;99:8944–8949.
  • Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM. CXC chemokines in angiogenesis. Journal of Leukocyte Biology. 2000;68: 1–8.
  • Keane MP, Arenberg DA, Moore BB, Addison CL, Stri-eter RM. CXC chemokines and angiogenesis/angiostasis. Proceedings of the Association of American Physicians. 110:288–296.
  • Strieter RM, Polverini PJ, Arenberg DA, Walz A, Opdenakker G, Van Damme J, Kunkel SL. Role of C-X-C chemokines as regulators of angiogenesis in lung cancer. Journal of Leukocyte Biology. 1995;57:752–762.
  • Strieter RM, Polverini PJ, Kunkel SL, Arenberg DA, Burdick MD, Kasper J, Dzuiba J, Van Damme J, Walz A, Marriott D. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. The Journal of Bio-logical Chemistry. 1995;270:27348–27357.
  • Strieter RM, Polverini PJ, Arenberg DA, Kunkel SL. The role of CXC chemokines as regulators of angiogenesis. Shock. 1995;4:155–160.
  • Strieter RM, Kunkel SL, Arenberg DA, Burdick MD, Polverini PJ. Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochemical and Biophysical Research Communications. 1995;210: 51–57.
  • Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, Taub DT, Iannettoni MD, Whyte RI, Strieter RM. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. The Journal of Experimental Medicine. 1996;184:981–992.
  • Arenberg DA, Polverini PJ, Kunkel SL, Shanafelt A, Hesselgesser J, Horuk R, Strieter RM. The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer. Journal of Leukocyte Biology. 1997; 62:554–562.
  • Moore BB, Keane MP, Addison CL, Arenberg DA, Strieter RM. CXC chemokine modulation of angiogene- sis: The importance of balance between angiogenic and angiostatic members of the family. Journal of Investigative Medicine: the Official Publication of the American Federation For Clinical Research. 1998;46: 113–120.
  • Moore BB, Arenberg DA, Addison CL, Keane MP, Strieter RM. Tumor angiogenesis is regulated by CXC chemokines. The Journal of Laboratory and Clinical Medicine. 1998;132:97–103.
  • Arenberg DA, Zlotnick A, Strom SR, Burdick MD, Strieter RM. The murine CC chemokine, 6C-kine, inhibits tumor growth and angiogenesis in a human lung cancer SCID mouse model. Cancer Immunology, Immunother-apy: Cii. 2001;49: 587–592.
  • Romagnani P, Annunziato F, Lasagni L, Lazzeri E, Beltrame C, Francalanci M, Uguccioni M, Galli G, Cosmi L, Maurenzig L, Baggiolini M, Maggi E, Romagnani S, Serio M. Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angio-static activity. The Journal of Clinical Investigation. 2001;107:53–63.
  • Cejkova J, Lojda Z. Histochemistry of some proteases in the normal rabbit, pig and ox corneas. Histochemistry. 1986;84:67–71.
  • Proost P, Schutyser E, Menten P, Struyf S, Wuyts A, Opdenakker G, Detheux M, Parmentier M, Durinx C, Lambeir AM, Neyts J, Liekens S, Maudgal PC, Billiau A, Van Damme J. Amino-terminal truncation of CXCR3 agonists impairs receptor signaling and lymphocyte chemotaxis, while preserving antiangiogenic properties. Blood. 2001;98: 3554–3561.
  • Lin CS, Lin G, Chen KC, Ho HC, Lue TF. Vascular endothelial growth factor induces IP-10 chemokine expression. Biochemical and Biophysical Research Com-munications. 2002;292: 79–82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.