261
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

The microbiome and rheumatic heart disease: current knowledge and future perspectives

, ORCID Icon, ORCID Icon, , , , & show all
Pages 525-533 | Received 23 Jan 2023, Accepted 20 Apr 2023, Published online: 12 May 2023

References

  • Carapetis JR, Beaton A, Cunningham MW, et al. Acute rheumatic fever and rheumatic heart disease. Nat Rev Dis Primers. 2016;2(1):1–24.
  • Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.
  • Watkins DA, Johnson CO, Colquhoun SM, et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N Engl J Med. 2017;377(8):713–722.
  • Rwebembera J, Beaton AZ, de Loizaga SR, et al. The global impact of rheumatic heart disease. Curr Cardiol Rep. 2021;23(11):160.
  • Martin WJ, Steer AC, Smeesters PR, et al. Post-infectious group a streptococcal autoimmune syndromes and the heart. Autoimmun Rev. 2015;14(8):710–725.
  • Beaton A, Okello E, Engelman D, et al. Determining the impact of benzathine penicillin G prophylaxis in children with latent rheumatic heart disease (goal trial): study protocol for a randomized controlled trial. Am Heart J. 2019;215:95–105.
  • Cunningham MW. Rheumatic fever, autoimmunity, and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014;33(4):314–329.
  • Chakravarty SD, Zabriskie JB, Gibofsky A. Acute rheumatic fever and streptococci: the quintessential pathogenic trigger of autoimmunity. Clin Rheumatol. 2014;33(7):893–901.
  • Passos LS, Nunes MC, Aikawa E. Rheumatic heart valve disease pathophysiology and underlying mechanisms. Front Cardiovasc Med. 2020;7:612716.
  • Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–141.
  • De Luca F, Shoenfeld Y. The microbiome in autoimmune diseases. Clin Exp Immunol. 2019;195(1):74–85.
  • Haase S, Haghikia A, Wilck N, et al. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018;154(2):230–238.
  • Caminer AC, Haberman R, Scher JU. Human microbiome, infections, and rheumatic disease. Clin Rheumatol. 2017;36(12):2645–2653.
  • Guilherme L, Cury P, Demarchi LM, et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol. 2004;165(5):1583–1591.
  • Soares AC, Passos LS, Sable C, et al. Circulating cytokines predict severity of rheumatic heart disease. Int J Cardiol. 2019;289:107–109.
  • Toor D, Sharma N. T cell subsets: an integral component in pathogenesis of rheumatic heart disease. Immunol Res. 2018;66(1):18–30.
  • Toor D, Vohra H. Immune responsiveness during disease progression from acute rheumatic fever to chronic rheumatic heart disease. Microbes Infect. 2012;14(12):1111–1117.
  • Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-S. pyogenes vaccine. Front Immunol. 2013;4:352.
  • Wen Y, Zeng Z, Gui C, et al. Changes in the expression of Th17 cell-associated cytokines in the development of rheumatic heart disease. Cardiovasc Pathol. 2015;24(6):382–387.
  • Bas HD, Baser K, Yavuz E, et al. A shift in the balance of regulatory T and T helper 17 cells in rheumatic heart disease. J Investig Med. 2014;62(1):78–83.
  • Abdallah AM, Abu-Madi M. The genetic control of the rheumatic heart: closing the genotype-phenotype gap. Front Med. 2021;8:611036.
  • Gray L-A, D'Antoine HA, Tong SYC, et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in aboriginal Australians provides support for pathogenic molecular mimicry. J Infect Dis. 2017;216(11):1460–1470.
  • Muhamed B, Parks T, Sliwa K. Genetics of rheumatic fever and rheumatic heart disease. Nat Rev Cardiol. 2020;17(3):145–154.
  • Muhamed B, Shaboodien G, Engel ME. Genetic variants in rheumatic fever and rheumatic heart disease. Am J Med Genet C Semin Med Genet. 2020;184(1):159–177.
  • Poomarimuthu M, Ramasamy T, Govindan R, et al. Association of HLA-DRB1 alleles with rheumatic fever and rheumatic heart disease: a meta-analysis. Immunol Invest. 2022;51(2):221–232.
  • Azevedo PM, Merriman TR, Topless RK, et al. Association study involving polymorphisms in IL-6, IL-1RA, and CTLA4 genes and rheumatic heart disease in New Zealand population of Māori and Pacific ancestry. Cytokine. 2016;85:201–206.
  • Bhatt M, Kumar S, Siddiqui MH, et al. Influence of cytokine gene polymorphism on the risk of rheumatic heart disease–a meta-analysis. Immunol Lett. 2018;194:69–78.
  • Col-Araz N, Pehlivan S, Baspinar O, et al. Role of cytokine gene (IFN-gamma, TNF-alpha, TGFbeta1, IL-6, and IL-10) polymorphisms in pathogenesis of acute rheumatic fever in Turkish children. Eur J Pediatr. 2012;171(7):1103–1108.
  • Col-Araz N, Pehlivan S, Baspinar O, et al. Association of macrophage migration inhibitory factor and mannose-binding lectin-2 gene polymorphisms in acute rheumatic fever. Cardiol Young. 2013;23(4):486–490.
  • Düzgün N, Duman T, Haydardedeoğlu FE, et al. The lack of genetic association of the toll-like receptor 2 (TLR2) Arg753Gln and Arg677Trp polymorphisms with rheumatic heart disease. Clin Rheumatol. 2007;26(6):915–919.
  • Maheshkumar P, Sivakumar E, Sambath S, et al. P138 KIR genotypes that encode activating NK cell receptor repertoire are associated with the sever form of rheumatic heart disease among South Indian population. Hum Immunol. 2017;78:155.
  • Messias-Reason IJ, Schafranski MD, Kremsner PG, et al. Ficolin 2 (FCN2) functional polymorphisms and the risk of rheumatic fever and rheumatic heart disease. Clin Exp Immunol. 2009;157(3):395–399.
  • Poomarimuthu M, Elango S, Soundrapandian S, et al. HLA-G 3′ UTR gene polymorphisms and rheumatic heart disease: a familial study among South Indian population. Pediatr Rheumatol. 2017;15(1):1–7.
  • Poomarimuthu M, Elango S, Solomon PR, et al. Association of IL17 and IL23R gene polymorphisms with rheumatic heart disease in South Indian population. Immunol Invest. 2018;47(7):754–764.
  • Poomarimuthu M, Elango S, Solomon PR, et al. Lack of association between TNF-alpha, IFN-gamma, IL-10 gene polymorphisms and rheumatic heart disease in South Indian population. Fetal Pediatr Pathol. 2018;37(5):309–318.
  • Sendur SN, Hazirolan T, Aydin B, et al. Specific FSTL1 polymorphism may determine the risk of cardiomyopathy in patients with acromegaly. Acta Cardiol. 2022;77(4):350–359.
  • Arrieta MC, Stiemsma LT, Amenyogbe N, et al. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427.
  • Bauer H, Horowitz RE, Levenson SM, et al. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am J Pathol. 1963;42(4):471–483.
  • Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–238.
  • Gantois I, Ducatelle R, Pasmans F, et al. Butyrate specifically downregulates salmonella pathogenicity island 1 gene expression. Appl Environ Microbiol. 2006;72(1):946–949.
  • Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543–547.
  • Jiao Y, Wu L, Huntington ND, et al. Crosstalk between gut microbiota and innate immunity and its implication in autoimmune diseases. Front Immunol. 2020;11:282.
  • Mu Q, Kirby J, Reilly CM, et al. Leaky gut as a danger signal for autoimmune diseases. Front Immunol. 2017;8:598.
  • Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504(7480):451–455.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.
  • Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461(7268):1282–1286.
  • Waldecker M, Kautenburger T, Daumann H, et al. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the Colon. J Nutr Biochem. 2008;19(9):587–593.
  • An D, Oh SF, Olszak T, et al. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell. 2014;156(1-2):123–133.
  • Brown EM, Kenny DJ, Xavier RJ. Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu Rev Immunol. 2019;37:599–624.
  • Bao Y, Dong C, Ji J, et al. Dysregulation of gut microbiome is linked to disease activity of rheumatic diseases. Clin Rheumatol. 2020;39(9):2523–2528.
  • Kocyigit D, Tokgozoglu L, Gurses KM, et al. Association of dietary and gut microbiota-related metabolites with calcific aortic stenosis. Acta Cardiol. 2021;76(5):544–552.
  • Lerner A, Aminov R, Matthias T. Dysbiosis may trigger autoimmune diseases via inappropriate post-translational modification of host proteins. Front Microbiol. 2016;7:84.
  • Alam C, Bittoun E, Bhagwat D, et al. Effects of a germ-free environment on gut immune regulation and diabetes progression in nonobese diabetic (NOD) mice. Diabetologia. 2011;54(6):1398–1406.
  • Kriegel MA, Sefik E, Hill JA, et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108(28):11548–11553.
  • Lee YK, Menezes JS, Umesaki Y, et al. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4615–4622.
  • Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 2016;68(11):2646–2661.
  • Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8(1):1–14.
  • Sato K, Takahashi N, Kato T, et al. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Sci Rep. 2017;7(1):1–13.
  • Zhong D, Wu C, Zeng X, et al. The role of gut microbiota in the pathogenesis of rheumatic diseases. Clin Rheumatol. 2018;37(1):25–34.
  • Malin M, Verronen P, Mykkanen H, et al. Increased bacterial urease activity in faeces in juvenile chronic arthritis: evidence of altered intestinal microflora? Br J Rheumatol. 1996;35(7):689–694.
  • Tejesvi MV, Arvonen M, Kangas SM, et al. Faecal microbiome in new-onset juvenile idiopathic arthritis. Eur J Clin Microbiol Infect Dis. 2016;35(3):363–370.
  • Lopez P, de Paz B, Rodrıguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 2016;6:24072.
  • Kinumaki A, Sekizuka T, Hamada H, et al. Characterization of the gut microbiota of Kawasaki disease patients by metagenomic analysis. Front Microbiol. 2015;6:824.
  • Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63(8):1275–1283.
  • Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA. 2008;105(43):16731–16736.
  • Morgan XC, Tickle TL, Sokol H, et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13(9):R79.
  • Zechner EL. Inflammatory disease caused by intestinal pathobionts. Curr Opin Microbiol. 2017;35:64–69.
  • Forbes JD, Van Domselaar G, Bernstein CN. The gut microbiota in immune-mediated inflammatory diseases. Front Microbiol. 2016;7:1081.
  • Shi XR, Chen BY, Lin WZ, et al. Microbiota in gut, oral cavity, and mitral valves are associated with rheumatic heart disease. Front Cell Infect Microbiol. 2021;11:643092.
  • Haak BW, Littmann ER, Chaubard JL, et al. Impact of gut colonization with butyrate-producing microbiota on respiratory viral infection following allo-HCT. Blood. 2018;131(26):2978–2986.
  • Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895–905.
  • Martinez-Nava GA, Mendez-Salazar EO, Vazquez-Mellado J, et al. The impact of short-chain fatty acid–producing bacteria of the gut microbiota in hyperuricemia and gout diagnosis. Clin Rheumatol. 2023;42(1):203–214.
  • Scher JU, Littman DR, Abramson SB. Microbiome in inflammatory arthritis and human rheumatic diseases: microbiome in rheumatic diseases. Arthritis Rheumatol. 2016;68(1):35–45.
  • Li M, Liang P, Li Z, et al. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Front Microbiol. 2015;6:692.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.