110
Views
1
CrossRef citations to date
0
Altmetric
Original Scientific Papers

Investigation of miR-26a-5p and miR-19a-3p expression levels in angiographically confirmed coronary artery disease

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 945-956 | Received 03 Nov 2022, Accepted 11 Jun 2023, Published online: 28 Jun 2023

References

  • Malakar AK, Choudhury D, Halder B, et al. A review on coronary artery disease, its risk factors, and therapeutics. J Cell Physiol. 2019;234(10):16812–16823. doi: 10.1002/jcp.28350.
  • Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol. 2018;141(4):1202–1207. doi: 10.1016/j.jaci.2017.08.034.
  • Sibley CR, Wood MJ. The miRNA pathway in neurological and skeletal muscle disease: implications for pathogenesis and therapy. J Mol Med. 2011;89(11):1065–1077. doi: 10.1007/s00109-011-0781-z.
  • Suzuki HI, Miyazono K. Emerging complexity of microRNA generation Cascades. J Biochem. 2011;149(1):15–25. doi: 10.1093/jb/mvq113.
  • Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med. 2014;20(12):716–725. doi: 10.1016/j.molmed.2014.10.006.
  • Giglio RV, Nikolic D, Volti GL, et al. Liraglutide ıncreases serum levels of MicroRNA-27b, -130a and -210 in patients with type 2 diabetes mellitus: a novel epigenetic effect. Metabolites. 2020;10(10):391. doi: 10.3390/metabo10100391.
  • Sanlialp M, Dodurga Y, Uludag B, et al. Peripheral blood mononuclear cell microRNAs in coronary artery disease. J Cell Biochem. 2020;121(4):3005–3009. doi: 10.1002/jcb.29557.
  • Schober A, Weber C. Mechanisms of MicroRNAs in atherosclerosis. Annu Rev Pathol. 2016;11:583–616. doi: 10.1146/annurev-pathol-012615-044135.
  • Zhu L, Li N, Sun L, et al. Non-coding RNAs: the key detectors and regulators in cardiovascular disease. Genomics. 2021;113(1 Pt 2):1233–1246. doi: 10.1016/j.ygeno.2020.10.024.
  • Yao L, Lv X, Wang X. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury. J Pharmacol Sci. 2016;131(1):6–12. doi: 10.1016/j.jphs.2015.07.023.
  • Leeper NJ, Raiesdana A, Kojima Y, et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226(4):1035–1043. doi: 10.1002/jcp.22422.
  • Wu W, Shang YQ, Dai SL, et al. MiR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF. Bratisl Lek Listy. 2017;118(8):499–503. doi: 10.4149/BLL_2017_096.
  • Yang X, Dong M, Wen H, et al. MiR-26a contributes to the PDGF-BB-induced phenotypic switch of vascular smooth muscle cells by suppressing Smad1. Oncotarget. 2017;8(44):75844–75853. doi: 10.18632/oncotarget.17998.
  • Icli B, Wara AK, Moslehi J, et al. MicroRNA-26a regulates pathological and physiological angiogenesis by targeting BMP/SMAD1 signaling. Circ Res. 2013;113(11):1231–1241. doi: 10.1161/CIRCRESAHA.113.301780.
  • Gollmann-Tepeköylü C, Pölzl L, Graber M, et al. miR-19a-3p containing exosomes improve function of ischaemic myocardium upon shock wave therapy. Cardiovasc Res. 2020;116(6):1226–1236. doi: 10.1093/cvr/cvz209.
  • Mao ZJ, Zhang QL, Shang J, et al. Shenfu ınjection attenuates rat myocardial hypertrophy by up-regulating miR-19a-3p expression. Sci Rep. 2018;8(1):4660. doi: 10.1038/s41598-018-23137-4.
  • Zou M, Wang F, Gao R, et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep. 2016;6:24747. doi: 10.1038/srep24747.
  • Akhtar S, Hartmann P, Karshovska E, et al. Endothelial Hypoxia-Inducible factor-1α promotes atherosclerosis and monocyte recruitment by upregulating MicroRNA-19a. Hypertension. 2015;66(6):1220–1226. doi: 10.1161/HYPERTENSIONAHA.115.05886.
  • Kumar S, Kim CW, Simmons RD, et al. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34(10):2206–2216. doi: 10.1161/ATVBAHA.114.303425.
  • Chen H, Li X, Liu S, et al. MircroRNA-19a promotes vascular inflammation and foam cell formation by targeting HBP-1 in atherogenesis. Sci Rep. 2017;7(1):12089. doi: 10.1038/s41598-017-12167-z.
  • Ren ZQ, Liu N, Zhao K. Micro RNA-19a suppresses IL-10 in peripheral B cells from patients with atherosclerosis. Cytokine. 2016;86:86–91. doi: 10.1016/j.cyto.2016.07.019.
  • Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51(3):606. doi: 10.1016/s0002-9149(83)80105-2.
  • Serruys PW, Morice M-C, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–972. doi: 10.1056/NEJMoa0804626.
  • Ozuynuk AS, Erkan AF, Dogan N, et al. Examining the effects of the CLU and APOE polymorphisms’ combination on coronary artery disease complexed with type 2 diabetes mellitus. J Diabetes Complications. 2022;36(1):108078. doi: 10.1016/j.jdiacomp.2021.108078.
  • Coban N, Pirim D, Erkan AF, et al. Hsa-miR-584-5p as a novel candidate biomarker in turkish men with severe coronary artery disease. Mol Biol Rep. 2020;47(2):1361–1369. doi: 10.1007/s11033-019-05235-2.
  • Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12(8):697. doi: 10.1038/nmeth.3485.
  • Becker KG, Barnes KC, Bright TJ, et al. The genetic association database. Nat Genet. 2004;36(5):431–432. doi: 10.1038/ng0504-431.
  • Rappaport N, Nativ N, Stelzer G, et al. MalaCards: an integrated compendium for diseases and their annotation. Database (Oxford). 2013;2013:bat018. doi: 10.1093/database/bat018.
  • Rehmsmeier M, Steffen P, Hochsmann M, et al. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10(10):1507–1517. doi: 10.1261/rna.5248604.
  • Chen Z, Li C, Lin K, et al. MicroRNAs in acute myocardial infarction: evident value as novel biomarkers? Anatol J Cardiol. 2018;19(2):140–147. doi: 10.14744/AnatolJCardiol.2017.8124.
  • Ghafouri-Fard S, Gholipour M, Taheri M. Role of MicroRNAs in the pathogenesis of coronary artery disease. Front Cardiovasc Med. 2021;8:632392. doi: 10.3389/fcvm.2021.632392.
  • Chen J, Zhang K, Xu Y, et al. The role of microRNA-26a in human cancer progression and clinical application. Tumour Biol. 2016;37(6):7095–7108. doi: 10.1007/s13277-016-5017-y.
  • Icli B, Dorbala P, Feinberg MW. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc Med. 2014;24(6):241–248. doi: 10.1016/j.tcm.2014.06.003.
  • Zhang X, Cai H, Zhu M, et al. Circulating microRNAs as biomarkers for severe coronary artery disease. Medicine (Baltimore). 2020;99(17):e19971. doi: 10.1097/MD.0000000000019971.
  • Velle-Forbord T, Eidlaug M, Debik J, et al. Circulating microRNAs as predictive biomarkers of myocardial infarction: evidence from the HUNT study. Atherosclerosis. 2019;289:1–7. doi: 10.1016/j.atherosclerosis.2019.07.024.
  • Liu Y, Li Q, Hosen MR, et al. Atherosclerotic conditions promote the packaging of functional MicroRNA-92a-3p Into endothelial microvesicles. Circ Res. 2019;124(4):575–587. doi: 10.1161/CIRCRESAHA.118.314010.
  • Wang J, Feng Q, Liang D, et al. MiRNA-26a inhibits myocardial infarction-induced apoptosis by targeting PTEN via JAK/STAT pathways. Cells Dev. 2021;165:203661. doi: 10.1016/j.cdev.2021.203661.
  • Song Y, Jin D, Jiang X, et al. Overexpression of microRNA-26a protects against deficient β-cell function via targeting phosphatase with tensin homology in mouse models of type 2 diabetes. Biochem Biophys Res Commun. 2018;495(1):1312–1316. doi: 10.1016/j.bbrc.2017.11.170.
  • Mehraban MH, Motovali-Bashi M, Ghasemi Y. MiR-26a and miR-26b downregulate the expression of sucrase-isomaltase enzyme: a new chapter in diabetes treatment. Biochem Biophys Res Commun. 2019;519(1):192–197. doi: 10.1016/j.bbrc.2019.08.138.
  • Fu X, Dong B, Tian Y, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest. 2015;125(6):2497–2509. doi: 10.1172/JCI75438.
  • Heine PA, Taylor JA, Iwamoto GA, et al. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci USA. 2000;97(23):12729–12734. doi: 10.1073/pnas.97.23.12729.
  • Nilsson M, Dahlman I, Rydén M, et al. Oestrogen receptor alpha gene expression levels are reduced in obese compared to normal weight females. Int J Obes. 2007;31(6):900–907. doi: 10.1038/sj.ijo.0803528.
  • Sumi MP, Guru SA, Mir R, et al. Clinical ımportance of estrogen receptor 1 (ESR1) gene polymorphisms and their expression patterns in coronary artery disease patients: a study from India. Indian J Clin Biochem. 2019;34(2):133–142. doi: 10.1007/s12291-019-00827-y.
  • Liu X, Zheng X, Wang Y, et al. Dysregulation serum miR-19a-3p is a diagnostic biomarker for asymptomatic carotid artery stenosis and a promising predictor of cerebral ıschemia events. Clin Appl Thromb Hemost. 2021;27:10760296211039287. doi: 10.1177/10760296211039287.
  • Su Y, Sun Y, Tang Y, et al. Circulating miR-19b-3p as a novel prognostic biomarker for acute heart failure. J Am Heart Assoc. 2021;10:e022304.
  • Gao F, Kataoka M, Liu N, et al. Therapeutic role of miR-19a/19b in cardiac regeneration and protection from myocardial infarction. Nat Commun. 2019;10(1):1802. doi: 10.1038/s41467-019-09530-1.
  • Liang J, Bai S, Su L, et al. A subset of circulating microRNAs is expressed differently in patients with myocardial infarction. Mol Med Rep. 2015;12(1):243–247. doi: 10.3892/mmr.2015.3422.
  • Yuan H, Jiao L, Yu N, et al. Histone deacetylase 3-mediated ınhibition of microRNA-19a-3p facilitates the development of rheumatoid arthritis-associated ınterstitial lung disease. Front Physiol. 2020;11:549656. doi: 10.3389/fphys.2020.549656.
  • Downing LE, Ferguson BS, Rodriguez K, et al. A grape seed procyanidin extract inhibits HDAC activity leading to increased pparα phosphorylation and target-gene expression. Mol Nutr Food Res. 2017;61(2):1770021. doi: 10.1002/mnfr.201770021.
  • Takahashi P, Xavier DJ, Evangelista AF, et al. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene. 2014;539(2):213–223. doi: 10.1016/j.gene.2014.01.075.
  • Chen ZJ, Zhao XS, Fan TP, et al. Glycine ımproves ıschemic stroke through miR-19a-3p/AMPK/GSK-3β/HO-1 pathway. Drug Des Devel Ther. 2020;14:2021–2031. doi: 10.2147/DDDT.S248104.
  • Yang Q, Ma Q, Xu J, et al. Prkaa1 metabolically regulates monocyte/macrophage recruitment and viability in diet-ınduced murine metabolic disorders. Front Cell Dev Biol. 2020;8:611354. doi: 10.3389/fcell.2020.611354.
  • Youn HD, Chatila TA, Liu JO. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. Embo J. 2000;19(16):4323–4331. doi: 10.1093/emboj/19.16.4323.
  • Liu Y, Niu W, Wu Z, et al. Variants in exon 11 of MEF2A gene and coronary artery disease: evidence from a case-control study, systematic review, and meta-analysis. PLoS One. 2012;7(2):e31406. doi: 10.1371/journal.pone.0031406.
  • Zhu B, Liu J, Zhao Y, et al. lncRNA-SNHG14 promotes atherosclerosis by regulating RORα expression through sponge miR-19a-3p. Comput Math Methods Med. 2020;2020:3128053. doi: 10.1155/2020/3128053.
  • Coban N, Gulec C, Ozsait-Selcuk B, et al. CYP19A1, MIF and ABCA1 genes are targets of the RORα in monocyte and endothelial cells. Cell Biol Int. 2017;41(2):163–176. doi: 10.1002/cbin.10712.
  • Gulec C, Coban N, Ozsait-Selcuk B, et al. Identification of potential target genes of ROR-alpha in THP1 and HUVEC cell lines. Exp Cell Res. 2017;353(1):6–15. doi: 10.1016/j.yexcr.2017.02.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.