1,523
Views
257
CrossRef citations to date
0
Altmetric
REVIEW

The role of matrix metalloproteinases in the oral environment

, , &
Pages 1-13 | Received 11 Nov 2005, Published online: 02 Jul 2009

References

  • Birkedal-Hansen H. Role of matrix metalloproteinases in human periodontal diseases. J Periodontol 1993; 64: 474–84
  • Kreis T, Vale R. Matrix metalloproteinases. Guidebook to the extracellular matrix, anchor, and adhesion proteins2nd edition, MD Sternlicht, Z Werb. Oxford University Press, San Francisco 1999; 519–42
  • Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function and biochemistry. Circ Res 2003; 92: 827–39
  • Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999; 274: 21491–4
  • Nuttall RK, Sampieri CL, Pennington CJ, Gill SE, Schultz GA, Edwards DR. Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Letters 2004; 563: 129–34
  • Vu TH, Werb Z. Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 2000; 14: 2123–33
  • Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001; 17: 463–516
  • Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006; 69: 562–73
  • Bode W, Reinemer P, Huber R, Kleine T, Schnierer S, Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J 1994; 13: 1263–9
  • Geiger SB, Harper E. The inhibition of human gingival collagenase by an inhibitor extracted from human teeth. J Periodontal Res 1981; 16: 8–12
  • Tjäderhane L, Larjava H, Sorsa T, Uitto V-J, Larmas M, Salo T. The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. J Dent Res 1998; 77: 1622–9
  • Vuotila T, Ylikontiola L, Sorsa T, Luoto H, Hanemaaijer R, Salo T, et al. The relationship between MMPs and pH in whole saliva of irradiated head and neck cancer patients. J Oral Pathol Med 2002; 31: 329–38
  • Souza A, Line SR. The biology of matrix metalloproteinases. Revista da FOB 2002; 10: 1–6
  • Takahashi C, Sheng Z, Horan TP, Kitayama H, Maki M, Hitomi K, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA 1998; 95: 13221–6
  • Sasahara RM, Brochado SM, Takahashi C, Oh J, Maria-Engler SS, Granjeiro JM, et al. Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. Cancer Detect Prev 2002; 26: 435–43
  • Welm B, Mott J, Werb Z. Development biology: vasculogenesis is a wreck without RECK. Current Biol 2002; 12: R209–11
  • Oh J, Takahashi R, Kondo S, Mizoguchi A, Adachi E, Sasahara RM, et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 2001; 107: 789–800
  • Correa, TC, Brohem, CA, Winnischofer, SM, da Silva Cardeal, LB, Sasahara, RM, Taboga, SR, et al. Downregulation of the RECK-tumor and metastasis suppressor gene in glioma invasiveness. J Cell Biochem 2006; [Epub ahead of print].
  • Oh J, Seo DW, Diaz T, Wei B, Ward Y, Ray JM. Tissue inhibitors of metalloproteinase 2 inhibits endothelial cell migration through increased expression of RECK. Cancer Res 2004; 64: 9062–9
  • Oh J, Diaz T, Wei B, Chang H, Noda M, Stetler-Stevenson WG. TIMP-2 upregulates RECK expression via dephosphorylation of paxillin tyrosine residues 31 and 118. Oncogene 2006; 25: 4230–4
  • Simizu S, Takagi S, Tamura Y, Osada H. RECK-mediated suppression of tumor cell invasion is regulated by glycosylation in human tumor cell lines. Cancer Res 2005; 65: 7455–61
  • Kumamoto H, Ooya K. Immunohistochemical detection of MT1-MMP, RECK, and EMMPRIN in ameloblastic tumors. J Oral Pathol Med 2006; 35: 345–51
  • van Lent, PL, Span, PN, Sloetjes, AW, Radstake, TR, van Lieshout, AW, Heuvel, JJ, et al. Expression and localization of the new metalloproteinase inhibitor RECK (reversion inducing cysteine-rich protein with Kazal motifs) in inflamed synovial membranes of patients with rheumatoid arthritis. Ann Rheum Dis 2005;64:368–74.
  • Schlondorff J, Blobel C. Metalloprotease-disintegrins: modular proteins capable of promoting cell–cell interactions and triggering signals by protein ectodomain shedding. J Cell Sci 1999; 112: 3603–17
  • Blobel CP. Metalloprotease-disintegrins: links to cell adhesion and cleavage of TNFa and Notch. Cell 1997; 90: 589–92
  • Black RA, White JM. ADAMs: focus on the protease domain. Curr Opin Cell Biol 1998; 10: 654–9
  • Primakoff P, Myles DG. The ADAM gene family: surface proteins with an adhesion and protease activity packed into a single molecule. Trends Genet 2000; 16: 83–7
  • Zhao, Z, Wen, LY, Jin, M, Deng, ZH, Jin, Y. ADAM28 participates in the regulation of tooth development. Arch Oral Biol 2006; [Epub ahead of print].
  • Ye S. Polymorphism in matrix metalloproteinase gene promoters: implication in regulation of gene expression and susceptibility of various diseases. Matrix Biol 2000; 19: 623–9
  • Caterina JJ, Skobe Z, Shi J, Ding Y, Simmer JP, Birkedal-Hansen H, et al. Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2002; 277: 49598–604
  • DenBesten PK, Yan Y, Featherstone JDB, Hilton JF, Smith CE, Li W. Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol 2002; 47: 763–70
  • Bartlett JD, Beniash E, Lee DH, Smith CE. Decreased mineral content in MMP-20 null mouse enamel is prominent during the maturation stage. J Dent Res 2004; 83: 909–13
  • Hall R, Septier D, Embery G, Goldberg M. Stromelysin-1 (MMP-3) in forming enamel and predentine in rat incisor – coordinated distribution with proteoglycans suggests a functional role. Histochem J 1999; 31: 761–70
  • Martin de Las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol 2000; 45: 757–65
  • Sulkala M, Larmas M, Sorsa T, Salo T, Tjäderhane L. The localization of matrix metalloproteinase-20 (MMP-20, Enamelysin) in mature human teeth. J Dent Res 2002; 81: 603–7
  • Sulkala M, Wahlgren J, Larmas M, Sorsa T, Teronen O, Salo T, et al. The effects of MMP inhibitors on human salivary MMP activity and caries progression in rats. J Dent Res 2001; 80: 1545–9
  • Wahlgren J, Salo T, Teronen O, Luoto H, Sorsa T, Tjäderhane L. Matrix metalloproteinase-8 (MMP-8) in pulpal inflammation and periapical root-canal exudates. Int Endod J 2002; 35: 897–904
  • Gusman H, Santana RB, Zehnder M. Matrix metalloproteinase levels and gelatinolytic activity in clinically healthy and inflamed human dental pulps. Eur J Oral Sci 2002; 110: 353–7
  • Mäkelä M, Salo T, Uitto V-J, Larjava H. Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. J Dent Res 1994; 73: 1397–406
  • Lee W, Aitken S, Sodek J, McCulloch CAG. Evidence of a direct relationship between neutrophil collagenase activity and periodontal tissue destruction in vivo: role of active enzyme in human periodontitis. J Periodontal Res 1995; 30: 23–33
  • Van Der Zee E, Everts V, Beersten W. Cytokine-induced endogenous procollagenase stored in the extracellular matrix of soft connective tissue results in a burst of collagen breakdown following its activation. J Periodontal Res 1996; 31: 483–8
  • Ejeil A, Igondjo-Tchen S, Ghomrasseni S, Pellat B, Godeau G, Gogly B. Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingival. J Periodontol 2003; 74: 188–95
  • Sorsa T, Tjäderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis 2004; 10: 311–18
  • Pashley DH, Tay FR, Yiu C, Hashimoto M, Carvalho RM, Ito S. Collagen degradation by host-derived enzymes during aging. J Dent Res 2004; 83: 216–21
  • Tay FR, Pashley DH. Dentin bonding – is there a future?. J Adhes Dent 2004; 6: 263
  • Delaissé J-M, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L. Matrix metalloproteinase (MMP) and cathepsin K contribute differentially to osteoblastic activities. Microsc Res Tech 2003; 61: 504–13
  • Parikka V, Väänänen A, Risteli J, Salo T, Sorsa T, Väänänen HK, et al. Human mesenchymal stem cell derived osteoblasts degrade organic bone matrix in vitro by matrix metalloproteinases. Matrix Biol 2005; 24: 438–47
  • Garnero P, Borel O, Byrjalsen I, Ferreras M, Drake FH, McQueney MS, et al. The collagenolytic activity of cathepsin K is unique among mammalian proteinases. J Biol Chem 1998; 273: 32347–52
  • Blavier L, Delaisse JM. Matrix metalloproteinases are obligatory for the migration of preosteoclasts to the developing marrow cavity of primitive long bones. J Cell Sci 1995; 108: 3649–59
  • Inui T, Ishibashi O, Origane Y, Fujimori K, Kokubo T, Nakajima M. Matrix metalloproteinases and lysosomal cysteine proteases in osteoclasts contribute to bone resorption through distinct modes of action. Biochem Biophys Res Commun 1999; 258: 173–8
  • Engsig MT, Chen QJ, Vu TH, Pedersen AC, Therkidsen B, Lund LR, et al. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 2000; 151: 879–89
  • Sato T, del Carmen Ovejero M, Hou P, Heegaard AM, Kumegawa M, Foged NT, et al. Identification of the membrane-type matrix metalloproteinase MT1-MMP in osteoclasts. J Cell Sci 1997; 110: 589–96
  • Fuller K, Chambers TJ. Localisation of mRNA for collagenase in osteocytic, bone surface and chondrocytic cells but not osteoclasts. J Cell Sci 1995; 108: 2221–30
  • Zhao W, Byrne MH, Boyce BF, Krane SM. Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice. J Clin Invest 1999; 103: 517–24
  • Everts V, Delaisse JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, et al. The bone lining cell: its role in cleaning Howship's lacunae and initiating bone formation. J Bone Miner Res 2002; 17: 77–90
  • Nakamura H, Sato G, Hirata A, Yamamoto T. Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Bone 2004; 34: 48–56
  • Johansson N, Saarialho-Kere U, Airola K, Herva R, Nissinen L, Westermarck J, et al. Collagenase-3 (MMP-13) is expressed by hypertrophic chondrocytes, periosteal cells, and osteoblasts during human fetal bone development. Dev Dyn 1997; 208: 387–97
  • Holmbeck K, Bianco P, Caterina J, Yamada S, Kromer M, Kuznetsov SA, et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell 1999; 99: 81–92
  • Filanti C, Dickson GR, Di Martino D, Ulivi V, Sanguineti C, Romano P, et al. The expression of metalloproteinase-2, -9, and -14 and of tissue inhibitors-1 and -2 is developmentally modulated during osteogenesis in vitro, the mature osteoblastic phenotype expressing metalloproteinase-14. J Bone Miner Res 2000; 15: 2154–68
  • Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, Yu Y, et al. Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 2004; 131: 5883–95
  • Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A, et al. Matrix metalloproteinase-dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem 2002; 277: 44061–7
  • Karsdal MA, Andersen TA, Bonewald L, Christiansen C. Matrix metalloproteinases (MMPs) safeguard osteoblasts from apoptosis during transdifferentiation into osteocytes: MT1-MMP maintains osteocyte viability. DNA Cell Biol 2004; 23: 155–65
  • Holmbeck K, Bianco P, Pidoux I, Inoue S, Billinghurst RC, Wu W, et al. The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci 2005; 118: 147–56
  • Romanelli R, Mancini S, Laschinger C, Overall CM, Sodek J, McCulloch CA. Activation of neutrophil collagenase in periodontitis. Infect Immun 1999; 67: 2319–26
  • Nomura T, Ishii A, Oishi Y, Kohma H, Hara K. Tissue inhibitors of metalloproteinases level and collagenase activity in gingival crevicular fluid: the relevance to periodontal diseases. Oral Dis 1998; 4: 231–40
  • Kiili M, Cox SW, Chen HW, Wahlgren J, Maisi P, Eley BM, et al. Collagenase-2 (MMP-8) and collagenase-3 (MMP-13) in adult periodontitis: molecular forms and levels in gingival crevicular fluid and immunolocalisation in gingival tissue. J Clin Periodontol 2002; 29: 224–32
  • Kinane DF, Darby IS, Luoto H, Sorsa T, Tikanoja S, Mäntylä P. Changes in gingival crevicular fluid matrix metalloproteinase-8 levels during periodontal treatment and maintenance. J Periodontal Res 2003; 38: 400–4
  • Mäntylä P, Stenman M, Kinane DF, Tikajona S, Luoto H, Salo T, et al. Gingival crevicular fluid collagenase-2 (MMP-8) test strip for chair-side monitoring of periodontitis. J Periodontal Res 2003; 38: 436–9
  • Uitto VJ, Overall CM, McCulloch C. Proteolytic host cells enzymes in gingival crevice fluid. Periodontol 2000 2003; 31: 77–104
  • Ingman T, Tervahartiala T, Ding Y, Tschesche H, Haerian A, Kinane DF, et al. Matrix metalloproteinases and their inhibitors in gingival crevicular fluid and saliva of periodontitis patients. J Clin Periodontol 1996; 23: 1127–32
  • Golub LM, Lee HM, Ryan ME, Giannobile WV, Payne J, Sorsa T. Tetracyclines inhibit connective tissue breakdown by multiple non-antimicrobial mechanisms. Adv Dent Res 1998; 12: 12–26
  • Golub LM, Sorsa T, Lee HM, Ciancio S, Sorbi D, Ramamurthy NS, et al. Doxycycline inhibits neutrophil (PMN) type matrix metalloproteinases in human adult periodontitis gingiva. J Clin Periodontol 1995; 22: 100–9
  • Ciancio S, Ashley R. Safety and efficacy of sub-antimicrobial-dose doxycycline therapy in patients with adult periodontitis. Adv Dent Res 1998; 12: 27–31
  • Golub LM, McNamara TF, Ryan ME, Kohut B, Blieden T, Payonk G, et al. Adjunctive treatment with subantimicrobial doses of doxycycline: effects on gingival fluid collagenase activity and attachment loss in adult periodontitis. J Clin Periodontol 2001; 28: 146–56
  • Ciancio SG. Systemic medications: clinical significance in periodontics. J Clin Periodontol 2002; 29(Suppl 2)17–21
  • Ryan ME. Clinical applications for host modulatory therapy. Compendium of continuing education in dentistry. 2002; 23: 1071–6
  • Reddy MS, Geurs NC, Gunsolley JC. Periodontal host modulation with antiproteinase, anti-inflammatory, and bone-sparing agents. A systematic review. Ann Periodontol 2003; 8: 12–37
  • Golub LM, Ciancio S, Ramamurthy NS, Leung M, McNamara TF. Low-dose doxycycline therapy: effect on gingival and crevicular fluid collagensase activity in humans. J Periodont Res 1990; 25: 321–30
  • Golub LM, Lee HM, Greenwald RA, Ryan ME, Sorsa T, Salo T, et al. A matrix metalloproteinase inhibitor reduces bone-type collagen degradation fragments and specific collagenases in gingival crevicular fluid during adult periodontitis. Inflamm Res 1997; 46: 310–19
  • Emingil, G, Atilla, G, Sorsa, T, Luoto, H, Kirilmaz, L, Baylas, H. The effect of adjunctive low-dose doxycycline therapy on clinical parameters and gingival crevicular fluid matrix metalloproteinase-8 levels in chronic periodontitis. J Periodontol, 75:106–15.
  • Jontell M, Okiji T, Dahlgren U, Bergenholtz G. Immune defense mechanisms of the dental pulp. Crit Rev Oral Biol Med 1998; 9: 179–200
  • Sulkala M, Pääkkönen V, Larmas M, Salo T, Tjäderhane L. Matrix metalloproteinase-13 (MMP-13, Collagenase-3) is highly expressed in human tooth pulp. Connect Tissue Res 2004; 45: 231–7
  • Wahlgren J, Väänänen A, Teronen O, Sorsa T, Pirilä E, Hietanen J, et al. Laminin-5 gamma 2 chain is colocalized with gelatinase-A (MMP-2) and collagenase-3 (MMP-13) in odontogenic keratocysts. J Oral Pathol Med 2003; 32: 100–7
  • Caron C, Xue J, Sun X, Simmer JP, Barlett JD. Gelatinase A (MMP-2) in developing tooth tissues and amelogenin hydrolysis. J Dent Res 2001; 80: 1660–4
  • Black GV, McKay F. Mottled teeth: an endemic developmental imperfection of the enamel heretofore unknown in the literature of dentistry. Dental Cosmos 1916; 58: 129–56
  • Fejerskov O, Thylstrup A, Larsen MJ. Clinical and structural features and possible pathogenic mechanisms of dental fluorosis. Scand J Dent Res 1977; 85: 510–34
  • Dayan D, Binderman I, Mechanic GL. A preliminary study of activation of collagenase in carious human dentine matrix. Arch Oral Biol 1983; 28: 185–7
  • Sulkala, M, Tervahartiala, T, Sorsa, T, Larmas, M, Salo, T, Tjäderhane, L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol (in press)
  • Keltjens HM, Schaeken MJ, Van Der Hoeven JS, Hendriks JC. Microflora of plaque from sound and carious root surfaces. Caries Res 1987; 21: 193–9
  • Jackson RJ, Lim DV, Dao ML. Identification and analysis of a collagenolytic activity in Streptococcus mutans. Curr Microbiol 1997; 34: 49–54
  • Okada Y, Naka K, Kawamura K, Matsumoto T, Nakanishi I, Fujimoto N, et al. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest 1995; 72: 311–22
  • Katz S, Park KK, Palenick CJ. In vitro root surface caries studies. J Oral Med 1987; 42: 40–8
  • Van Strijp AJ, Van Steenbergen TJ, Ten Cate JM. Bacterial colonization of mineralized and completely demineralized dentine in situ. Caries Res 1997; 31: 349–55
  • Kawasaki K, Featherstone JDB. Effects of collagenase on root demineralization. J Dent Res 1997; 76: 588–95
  • Konttinen YT, Halinen S, Hanemaaijer R, Sorsa T, Hietanen J, Ceponis A, et al. Matrix metalloproteinase (MMP)-9 type IV collagenase/gelatinase implicated in the pathogenesis of Sjogren's syndrome. Matrix Biol 1998; 17: 335–47
  • Lauhio A, Salo T, Tjäderhane L, Lähdevirta J, Golub LM, Sorsa T. Tetracyclines in treatment of rheumatoid arthritis. Lancet 1995; 346: 645–6
  • Gendron R, Greiner D, Sorsa T, Maryrand D. Inhibition of the activities of matrix metalloproteinases 2, 8 and 9 by chlorexidine. Clin Diagn Lab Immunol 1999; 6: 437–9
  • Van Strijp AJP, Jansen DC, Degroot J, Ten Cate JM, Everts V. Host-derived proteinases and degradation of dentin collagen in situ. Caries Res 2003; 37: 58–65
  • Van Strijp AJ, Klont B, Ten Cate JM. Solubilization of dentin matrix collagen in situ. J Dent Res 1992; 71: 1498–502
  • Van Strijp AJ, Van Steenbergen TJ, De Graaff J, Ten Cate JM. Bacterial colonization and degradation of demineralized dentin matrix in situ. Caries Res 1994; 28: 21–7
  • Palosaari H, Wahlgren J, Larmas M, Rönka T, Sorsa T, Salo T, et al. The expression of MMP-8 in human odontoblasts and dental pulp cells is down-regulated by TGF-β1. J Dent Res 2000; 79: 77–84
  • Palosaari H, Pennington CJ, Larmas M, Edwards DR, Tjäderhane L, Salo T. Expression profile of matrix metalloproteinases and tissue inhibitors of MMPs immature human odontoblasts and pulp tissue. Eur J Oral Sci 2003; 111: 117–27
  • Palosaari H, Tasanen K, Risteli J, Larmas M, Salo T, Tjäderhane L. Baseline expression and effect of TGF-β1 on types I and III collagen mRNA and protein synthesis in the odontoblasts and pulp cells in vitro. Calcif Tissue Int 2001; 68: 122–9
  • Tjäderhane L, Palosaari H, Sulkala M, Wahlgren J, Salo T. The expression of matrix metalloproteinases (MMPs) in human odontoblasts. Dentil/pulp complex. Proceedings of the International Conference on Dentin/Pulp Complex. Quintessence, Tokyo 2001; 45–51
  • Tjäderhane L, Palosaari H, Wahlgren J, Larmas M, Sorsa T, Salo T. Human odontoblast culture method: the expression of collagen and matrix metalloproteinases (MMPs). Adv Dent Res 2001; 15: 55–8
  • Tjäderhane L, Salo T, Larjava H, Larmas M, Overall CM. A novel organ culture method to study the function of human odontoblasts in vitro: gelatinase expression by odontoblasts is differentially regulated by TGF-β1. J Dent Res 1998; 77: 1486–96
  • Tziafas D, Smith AJ, Lesot H. Designing new treatment strategies in vital pulp theraphy. J Dentistry 2000; 28: 77–92
  • De Munck J, Van Meerbeek B, Yoshida Y, Inoue S, Vargas M, Suzuki K, et al. Four-year water degradation of total-etch adhesives bonded to dentin. J Dent Res 2003; 82: 136–40
  • Hashimoto M, Tay FR, Ohno H, Sano H, Kaga M, Yiu C, et al. SEM and TEM analysis of water degradation of human dentinal collagen. J Biomed Mater Res 2003; 66B: 287–98
  • Carrilho MRO, Tay FR, Pashley DH, Tjäderhane L, Carvalho RM. Mechanical stability of resin-dentin bond components. Dent Mater 2005; 21: 232–41
  • Hebling J, Pashley DH, Tjäderhane L, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 2005; 84: 741–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.