654
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

Self-assembling peptide P11-4 in remineralization of enamel caries – a systematic review of in-vitro studies

, , , , &
Pages 139-146 | Received 14 Nov 2019, Accepted 11 Sep 2020, Published online: 07 Oct 2020

References

  • Featherstone JD. Dental caries: a dynamic disease process. Aust Dent J. 2008;53(3):286–291.
  • Abdullah Z, John J. Minimally invasive treatment of white spot lesions-a systematic review. Oral Health Prev Dent. 2016;14(3):197–205.
  • Chen H, Liu X, Dai J, et al. Effect of remineralizing agents on white spot lesions after orthodontic treatment: a systematic review. Am J Orthod Dentofacial Orthop. 2013;143(3):376–382.e3.
  • Fincham AG1, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol. 1999;126(3):270–299.
  • Paine ML, Zhu DH, Luo W, et al. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol. 2000;132(3):191–200.
  • Paula AB, Fernandes AR, Coelho AS, et al. Therapies for white spot lesions–a systematic review. J Evid Based Dent Pract. 2017;17(1):23–38.
  • Cochrane NJ, Cai F, Huq NL, et al. New approaches to enhanced remineralization of tooth enamel. J Dent Res. 2010;89(11):1187–1197.
  • González-Cabezas C, Fernández CE. Recent advances in remineralization therapies for caries lesions. Adv Dent Res. 2018;29(1):55–59.
  • Ferrazzano GF, Coda M, Cantile T, et al. SEM investigation on casein phosphopeptides capability in contrasting cola drinks enamel erosion: an in vitro preliminary study. Eur J Paediatr Dent. 2012;13(4):285–288.
  • Walsh LJ. Molecular and pharmaceutical aspects of novel methods and materials for the prevention of tooth structure loss. Curr Pharm Biotechnol. 2017;18(1):45–51.
  • Alkilzy M, Santamaria RM, Schmoeckel J, et al. Treatment of carious lesions using self-assembling peptides. Adv Dent Res. 2018;29(1):42–47.
  • Alkilzy M, Tarabaih A, Santamaria RM, et al. Self-assembling peptide P11-4 and fluoride for regenerating enamel. J Dent Res. 2018;97(2):148–154.
  • Matson JB, Zha RH, Stupp SI. Peptide self-assembly for crafting functional biological materials. Curr Opin Solid State Mater Sci. 2011;15(6):225–235.
  • Kind L, Stevanovic S, Wuttig S, et al. Biomimetic remineralization of carious lesions by self-assembling peptide. J Dent Res. 2017;96(7):790–797.
  • Schmidlin P, Zobrist K, Attin T, et al. In vitro re-hardening of artificial enamel caries lesions using enamel matrix proteins or self-assembling peptides. J Appl Oral Sci. 2016;24(1):31–36.
  • Jablonski-Momeni A, Heinzel-Gutenbrunner M. Efficacy of the self-assembling peptide P11- 4 in constructing a remineralization scaffold on artificially-induced enamel lesions on smooth surfaces. J Orofac Orthop. 2014;75(3):175–190.
  • Kirkham J, Firth A, Vernals D, et al. Self-assembling peptide scaffolds promote enamel remineralization. J Dent Res. 2007;86(5):426–430.
  • Wierichs RJ, Kogel J, Lausch J, et al. Effects of self-assembling peptides P11-4, fluorides, and caries infiltration on artificial enamel caries lesions in vitro. Caries Res. 2017;51(5):451–459.
  • Takahashi F, Kurokawa H, Shibasaki S, et al. Ultrasonic assessment of the effects of self-assembling peptide scaffolds on preventing enamel demineralization. Acta Odontol Scand. 2016;74(2):142–147.
  • Silvertown JD, Wong BPY, Sivagurunathan KS, et al. Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence. J InvestigClin Dent. 2017;8(4):12257.
  • Golland L, Schmidlin PR, Schätzle M. The potential of self-assembling peptides for enhancement of in vitro remineralization of white spot lesions as mesured by quantitative laser fluorescence. Oral Health Prev Dent. 2017; 15(2):147–152.
  • Soares R, De Ataide IN, Fernandes M, et al. Assessment of enamel remineralisation after treatment with four different remineralising agents: a Scanning Electron Microscopy (SEM) study. J ClinDiagn Res. 2017;11(4):ZC136–ZC141.
  • Brunton PA, Davies RP, Burke JL, et al. Treatment of early caries lesions using biomimetic self-assembling peptides- a clinical safety trial. Br Dent J. 2013;215(4):E6–E6.
  • Schlee M, Schad T, Koch JH, et al. Clinical performance of self-assembling peptide P11 -4 in the treatment of initial proximal carious lesions: a practice-based case series. J InvestigClin Dent. 2018;9(1). DOI:10.1111/jicd.12286
  • Kamal D, Hassanein H, Elkassas D, et al. Complementary remineralizing effect of self-assembling peptide (P11-4) with CPP-ACPF or fluoride: an in vitro study. J Clin Exp Dent. 2020;12(2):e161–e168.
  • Üstün N, Aktören O. Analysis of efficacy of the self-assembling peptide-based remineralization agent on artificial enamel lesions. Microsc Res Tech. 2019;82(7):1065–1072.
  • Sindhura V, Uloopi KS, Vinay C, et al. Evaluation of enamel remineralizing potential of self-assembling peptide P11-4 on artificially induced enamel lesions in vitro. J Indian Soc Pedod Prev Dent. 2018;36(4):352–356.
  • Jablonski-Momeni A, Korbmacher-Steiner H, Heinzel-Gutenbrunner M, et al. Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci Rep. 2019;9(1):269.
  • Deyhle H, Dziadowiec I, Kind L, et al. Mineralization of early stage carious lesions in vitro–a quantitative approach. Dent J. 2015;3(4):111–122.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–1012.
  • Sterne JA, Hernan MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
  • Chow LW, Bitton R, Webber MJ, et al. A bioactive self-assembled membrane to promote angiogenesis. Biomaterials. 2011;32(6):1574–1582.
  • Shah RN, Shah NA, Lim MMD, et al. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc Natl Acad Sci Usa. 2010;107(8):3293–3298.
  • Matson JB, Stupp SI. Self-assembling peptide scaffolds for regenerative medicine. Chem Commun. 2012;48(1):26–33.
  • Aggel A, Bell M, Carrick LM, et al. pH as a trigger of peptide beta-sheet self-assembly and reversible switching between nematic and isotropic phases. J Am Chem Soc. 2003;125(32):9619–9628.
  • Buzalaf MAR, Hannas AR, Magalhaes AC, et al. pH-cycling models for in vitro evaluation of the efficacy of fluoridated dentifrices for caries control: strengths and limitations. J Appl Oral Sci. 2010;18(4):316–334.
  • Castilho LS, Cotta F, Bueno AC, et al. Validation of DIAGNOdent laser fluorescence and the international caries detection and assessment system (ICDAS) in diagnosis of occlusal caries in permanent teeth: an in vivo study. Eur J Oral Sci. 2016;124(2):188–194.
  • Iranzo-Cortés JE, Terzic S, Montiel-Company JM, et al. Diagnostic validity of ICDAS and DIAGNOdent combined: an in vitro study in pre-cavitated lesions. Lasers Med Sci. 2017;32(3):543–548.
  • de Souza JF, Diniz MB, Boldieri T, et al. In vitro performance of a pen-type laser fluorescence device and bitewing radiographs for approximal caries detection in permanent and primary teeth. Indian J Dent Res. 2014;25(6):702–710.
  • Mepparambath R, Bhat SS, Hegde SK, et al. Comparison of proximal caries detection in primary teeth between laser fluorescence. Int J Clinic PediatricDent. 2014;7(3):163–167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.