2,961
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Nanoionic memristive phenomena in metal oxides: the valence change mechanism

ORCID Icon, ORCID Icon & ORCID Icon

References

  • R. Waser, Memory devices and storage systems – introduction to part V, in Nanoelectronics and Information Technology, 3rd ed., R. Waser, ed., Wiley-VCH, Berlin, 2012, p. 603.
  • L.O. Chua and S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2) (1976), pp. 209.
  • G. Dearnaley, A.M. Stoneham, and D.V. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33(3) (1970), pp. 1129.
  • D.P. Oxley, Electroforming, switching and memory effects in oxide thin films. Electrocomp. Sci. Technol. 3(4) (1977), pp. 217.
  • H. Pagnia and N. Sotnik, Bistable switching in electroformed metal–insulator–metal devices. Phys. Stat. Sol. 108(1) (1988), pp. 11.
  • A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, Current switching of resistive states in magnetoresistive manganites. Nature 388(6637) (1997), pp. 50.
  • M.N. Kozicki, M. Yun, L. Hilt, and A. Singh, Proceedings of International Solid-State Ionic Devices Conference, Seattle, WA, 2–7 May, 1999.
  • A. Beck, J.G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications. Appl. Phys. Lett. 77(1) (2000), pp. 139.
  • R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nat. Mater. 6(11) (2007), pp. 833.
  • A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11(6) (2008), pp. 28.
  • R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26) (2009), pp. 2632.
  • F. Pan, C. Chen, Z. Wang, Y. Yang, J. Yang, and F. Zeng, Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci. Mater. Int. 20(1) (2010), pp. 1.
  • R. Waser, R. Bruchhaus, and S. Menzel, Redox-based resistive switching memories, in Nanoelectronics and Information Technology, 3rd ed., R. Waser, ed., Wiley-VCH, 2012. pp. 683.
  • D.S. Jeong, R. Thomas, R.S. Katiyar, J.F. Scott, H. Kohlstedt, A. Petraru, and C.S. Hwang, Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75(7) (2012), pp. 76502/1.
  • J.J. Yang, D.B. Strukov, and D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1) (2013), pp. 13.
  • D. Ielmini and R. Waser, Eds. Resistive Switching – From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Wiley-VCH, Weinheim, 2016.
  • D. Kahng and S.M. Sze, A floating gate and its application to memory devices. Bell Syst. Tech. J. 46 (1967), pp. 1288.
  • J.S. Moodera, L.R. Kinder, T.M. Wong, and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74(16) (1995), pp. 3273.
  • T. Miyazaki and N. Tezuka, Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 139(3) (1995), pp. L231.
  • J. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159(1–2) (1996), pp. L1.
  • L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B Condens. Matter. 54(13) (1996), pp. 9353.
  • M. Tsoi, A. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80 (1998), pp. 4281.
  • B. Dieny, R. Sousa, J.-P. Nozieres, O. Redon, and I.L. Prejbeanu, Magnetic random access memories, in Nanoelectronics and Information Technology, 3rd ed., R. Waser, ed., Wiley-VCH, Berlin, 2012, p. 655.
  • International Technology Roadmap for Semiconductors – 2013 Edition. Available at https://www.semiconductors.org/resources/2013-international-technology-roadmap-for-semiconductors-itrs/.
  • V. Garcia and M. Bibes, Ferroelectric tunnel junctions for information storage and processing. Nat. Commun. 5 (2014), pp. 4289/1.
  • E.T. Breyer, H. Mulaosmanovic, T. Mikolajick, and S. Slesazeck, Perspective on ferroelectric, hafnium oxide based transistors for digital beyond von-Neumann computing. Appl. Phys. Lett. 118(5) (2021), pp. 50501/1.
  • L. Esaki, R.B. Laibowitz, and P.J. Stiles, Polar Switch, IBM Tech. Discl. Bull. 13(8) (1971), pp. 2161.
  • P.W.M. Blom, R.M. Wolf, J.F.M. Cillessen, and M.P.C.M. Krijn, Ferroelectric Schottky diode. Phys. Rev. Lett. 73(15) (1994), pp. 2107.
  • H. Schroeder, V.V. Zhirnov, R.K. Cavin, and R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107(5) (2010), pp. 054517/1.
  • M. Ziegler, M. Oberlaender, D. Schroeder, W.H. Krautschneider, and H. Kohlstedt, Memristive operation mode of floating gate transistors: A two-terminal MemFlash-cell. Appl. Phys. Lett. 101 (2012), pp. 263504.
  • A.B.K. Chen, B.J. Choi, X. Yang, and I.-W. Chen, A parallel circuit model for multi-state resistive-switching random access memory. Adv. Funct. Mater. 22 (2012), pp. 546.
  • B.J. Choi, A.B.K. Chen, X. Yang, and I. Chen, Purely electronic switching with high uniformity, resistance tunability, and good retention in Pt-dispersed SiO2 thin films for ReRAM, Adv. Mater. 23(33) (2011), pp. 3847.
  • D. Pantel, S. Goetze, D. Hesse, and M. Alexe, Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11 (2012), pp. 289.
  • E. Tsymbal, A. Gruverman, V. Garcia, M. Bibes, and A. Barthélémy, Ferroelectric and multiferroic tunnel junctions. MRS Bulletin. 37 (2012), pp. 138.
  • L.W. Martin, Y.-H. Chu, and R. Ramesh, Emerging Multiferroic Memories in Emerging Non-Volatile Memories, Springer, New York, 2014, p. 103.
  • R. Guo, W. Lin, X. Yan, T. Venkatesan, and J. Chen, Ferroic tunnel junctions and their application in neuromorphic networks, Appl. Phys. Rev. 7(1) (2020), pp. 11304/1.
  • K. Akarvardar and H.-S. Philip Wong, Nanomechnical logic gates, in Nanoelectronics and Information Technology, 3rd ed., R. Waser, ed., Wiley-VCH, Berlin, 2012.
  • S. Goswami, A.J. Matula, S.P. Rath, S. Hedstrom, S. Saha, M. Annamalai, D. Sengupta, A. Patra, S. Ghosh, H. Jani, S. Sarkar, M.R. Motapothula, C.A. Nijhuis, J. Martin, S. Goswami, V.S. Batista, and T. Venkatesan, Robust resistive memory devices using solution-processable metal-coordinated azo aromatics. Nat. Mater. 16 (2017), pp. 1216.
  • S. Goswami, S.P. Rath, D. Thompson, S. Hedstrom, M. Annamalai, R. Pramanick, B.R. Ilic, S. Sarkar, S. Hooda, C.A. Nijhuis, J. Martin, R.S. Williams, S. Goswami, and T. Venkatesan, Charge disproportionate molecular redox for discrete memristive and memcapacitive switching. Nat. Nanotechnol. 15(5) (2020), pp. 380–389.
  • S. Raoux and M. Wuttig, Information storage based on phase change materials, in Nanoelectronics and Information Technology, 3rd ed., R. Waser, ed., Wiley-VCH, Berlin, 2012, p. 669.
  • E. Janod, J. Tranchant, B. Corraze, M. Querré, P. Stoliar, M. Rozenberg, T. Cren, D. Roditchev, V.T. Phuoc, M.-P. Besland, and L. Cario, Resistive switching in Mott insulators and correlated systems. Adv. Funct. Mater. 25 (2015), pp. 6287.
  • H. Ishiwara, Recent progress of FET-type ferroelectric memories, Integr Ferroelect. 34 (2000), pp. 1451.
  • Y. van de Burgt, E. Lubberman, E.J. Fuller, S.T. Keene, G.C. Faria, S. Agarwal, M.J. Marinella, A.A. Talin, and A. Salleo, A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater 16(4) (2017), pp. 414.
  • E.J. Fuller, S.T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C.D. James, M.J. Marinella, J. Joshua Yang, A. Salleo, and A. Alec Talin, Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364 (2019), pp. 570.
  • Y. Li, E.J. Fuller, J.D. Sugar, S. Yoo, D.S. Ashby, C.H. Bennett, R.D. Horton, M.S. Bartsch, M.J. Marinella, W. Lu, and A.A. Talin, Filament-free bulk resistive memory enables deterministic analogue switching. Adv. Mat. 32(45) (2020), pp. 2003984.
  • L. Goux, X.P. Wang, Y.Y. Chen, L. Pantisano, N. Jossart, B. Govoreanu, J.A. Kittl, M. Jurczak, L. Altimime, and D.J. Wouters, Roles and effects of Tin and Pt electrodes in resistive-switching HfO2 systems. Electrochem. Solid State Lett. 14 (2011), pp. H244.
  • E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Complementary resistive switches for passive nanocrossbar memories. Nat. Mater. 9(5) (2010), pp. 403.
  • F. Nardi, S. Balatti, S. Larentis, D.C. Gilmer, and D. Ielmini, Complementary switching in oxide-based bipolar resistive-switching random memory. IEEE Trans. Electron. Devices 60(1) (2013), pp. 70.
  • S. Balatti, S. Larentis, D.C. Gilmer, and D. Ielmini, Multiple memory states in resistive switching devices through controlled size and orientation of the conductive filament. Adv. Mater. 25(10) (2013), pp. 1474.
  • A. Schoenhals, J. Mohr, D.J. Wouters, R. Waser, and S. Menzel, 3-bit resistive RAM write-read scheme based on complementary switching mechanism. IEEE Electron Device Lett. 38(4) (2017), pp. 449.
  • S. Tappertzhofen, E. Linn, L. Nielen, R. Rosezin, F. Lentz, R. Bruchhaus, I. Valov, U. Böttger, and R. Waser, Capacity based nondestructive readout for complementary resistive switches. Nanotechnology 22(39) (2011), pp. 395203/1.
  • D.S. Jeong, H. Schroeder, and R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO[sub 2]/Pt stack. Electrochem. Solid State Lett. 10(8) (2007), pp. G51.
  • M. von Witzleben, S. Wiefels, A. Kindsmüller, P. Stasner, F. Berg, F. Cüppers, S. Hoffmann-Eifert, R. Waser, S. Menzel, and U. Böttger, Intrinsic RESET speed limit of valence change memories. ACS Appl. Electron. Mater. 3(12) (2021), pp. 5563.
  • H. Akinaga, H. Shima, F. Takano, I.H. Inoue, and H. Takagi, Resistive switching effect in metal/insulator/metal heterostructures and its application for non-volatile memory. IEEJ Trans. 2 (2007), pp. 453.
  • A. Wedig, M. Luebben, D.-Y. Cho, M. Moors, K. Skaja, V. Rana, T. Hasegawa, K. Adepalli, B. Yildiz, R. Waser, and I. Valov, Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems, Nat. Nanotechnol. 11(1) (2016), pp. 67.
  • G. Sassine, C. Nail, P. Blaise, B. Sklenard, M. Bernard, R. Gassilloud, A. Marty, M. Veillerot, C. Vallee, E. Nowak, and G. Molas, Hybrid-RRAM toward next generation of nonvolatile memory: coupling of oxygen vacancies and metal ions. Adv. Electron. Mater. 5(2) (2019), pp. 1800658/1.
  • C.-F. Chang, J.-Y. Chen, C.-W. Huang, C.-H. Chiu, T.-Y. Lin, P.-H. Yeh, and W.-W. Wu, Direct observation of dual-filament switching behaviors in Ta2O5-based Memristors. Small 13(15) (2017), pp. 1603116.
  • A. Schoenhals, D.J. Wouters, A. Marchewka, T. Breuer, K. Skaja, V. Rana, S. Menzel, and R. Waser, Critical ReRAM stack parameters controlling complementary versus bipolar resistive switching, 2015 IEEE International Memory Workshop, Monterey, CA, 2015. doi:10.1109/IMW.2015.7150281
  • Y. Yang, S. Choi, and W. Lu, Oxide heterostructure resistive memory. Nano Lett. 13(6) (2013), pp. 2908.
  • C. Chen, S. Gao, G. Tang, H. Fu, G. Wang, C. Song, F. Zeng, and F. Pan, Effect of electrode materials on AlN-based bipolar and complementary resistive switching. ACS Appl. Mater. Interfaces 5(5) (2013), pp. 1793.
  • H.Z. Zhang, D.S. Ang, K.S. Yew, and X.P. Wang, Enhanced stability of complementary resistance switching in the TiN/HfOx/TiN resistive random access memory device via interface engineering, Appl. Phys. Lett. 108(8) (2016), pp. 83505/1.
  • R. Waser, Electrochemical and thermochemical memories, 2008 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2008. doi:10.1109/IEDM.2008.4796675
  • I. Valov, R. Waser, J.R. Jameson, and M.N. Kozicki, Electrochemical metallization memories – fundamentals, applications, prospects. Nanotechnology 22(25) (2011), pp. 254003/1.
  • D. Ielmini, R. Bruchhaus, and R. Waser, Thermochemical resistive switching: Materials, mechanisms, and scaling projections. Phase Transit. 84(7) (2011), pp. 570.
  • Y. Wang, K.-M. Kang, M. Kim, H.-S. Lee, R. Waser, D. Wouters, R. Dittmann, J.J. Yang, and H.-H. Park, Mott-transition-based RRAM. Mater. Today 28 (2019), pp. 63.
  • A. Sawa and R. Meyer, Interface type switching, in Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, D. Ielmini and R. Waser, eds., Wiley-VCH GmbH, Weinheim, 2016. pp. 457.
  • Y. Aoki, C. Wiemann, V. Feyer, H.-S. Kim, C.M. Schneider, H. Ill-Yoo, and M. Martin, Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour, Nat. Mater 5 (2014), pp. 3473/1.
  • M.-J. Lee, S. Han, S.H. Jeon, B.H. Park, B.H. Park, B.S. Kang, S.-E. Ahn, K.H. Kim, C.B. Lee, C.J. Kim, I.-K. Yoo, D.H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9 (2009), pp. 1476.
  • J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, and R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20(21) (2009), pp. 215201.
  • R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Coexistence of filamentary and homogeneous resistive switching in Fe-Doped SrTiO3 thin-film memristive devices. Adv. Mater. 22(43) (2010), pp. 4819.
  • K. Kim, D.S. Jeong, and C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology 22(25) (2011), pp. 254002.
  • Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, and M. Liu, Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24(14) (2012), pp. 1844.
  • H. Maehne, L. Berger, D. Martin, V. Klemm, S. Slesazeck, S. Jakschik, D. Rafaja, and T. Mikolajick, Filamentary resistive switching in amorphous and polycrystalline Nb2O5 thin films. Solid-State Electronics. 72 (2012), pp. 73.
  • J. Yao, L. Zhong, D. Natelson, and J. Tour, In situ imaging of the conducting filament in a silicon oxide resistive switch, Sci. Rep. 2(00242) (2012), pp. 1.
  • J. Chen, C. Hsin, C. Huang, C. Chiu, Y. Huang, S. Lin, W. Wu, and L. Chen, Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett. 13 (2013), pp. 3671.
  • U. Celano, Y.Y. Chen, D.J. Wouters, G. Groeseneken, M. Jurczak, and W. Vandervorst, Filament observation in metal-oxide resistive switching devices. Appl. Phys. Lett. 102(12) (2013), pp. 121602/1.
  • G.-S. Park, Y.-B. Kim, S.Y. Park, X.S. Li, S. Heo, M.J. Lee, M. Chang, J.H. Kwon, M. Kim, U.-I. Chung, R. Dittmann, R. Waser, and K. Kim, In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure, Nat. Commun. 4 (2013), pp. 2382/1.
  • P. Calka, E. Martinez, V. Delaye, D. Lafond, G. Audoit, D. Mariolle, N. Chevalier, H. Grampeix, C. Cagli, V. Jousseaume, and C. Guedj, Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures. Nanotechnology 24(8) (2013), pp. 85706/1.
  • C.-W. Hsu, I-T. Wang, C.-L. Lo, M.-C. Chiang, W.-Y. Jang, C.-H. Lin, and T.-H. Hou, Self-rectifying bipolar TaOx/TiO2 RRAM with superior endurance over 1012 cycles for 3D high-density storage-class memory, 2013 IEEE Symposium on VLSI Technology, Kyoto, Japan, 2013.
  • Y. Y. Chen, M. Komura, R. Degraeve, B. Govoreanu, L. Goux, A. Fantini, N. Raghavan, S. Clima, L. Zhang, A. Belmonte, A. Redolfi, G. S. Kar, G. Groeseneken, D. J. Wouters, and M. Jurczak, Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current, 2013 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013. doi:10.1109/IEDM.2013.6724598
  • T. Ninomiya, Z. Wei, S. Muraoka, R. Yasuhara, K. Katayama, and T. Takagi, Conductive filament scaling of TaOx Bipolar ReRAM for improving data retention under low operation current. IEEE Trans. Electron Devices. 60 (2013), pp. 1384.
  • R.J. Kamaladasa, A.A. Sharma, Y. Lai, W. Chen, P.A. Salvador, J.A. Bain, M. Skowronski, and Y.N. Picard, In situ TEM imaging of defect dynamics under electrical bias in resistive switching rutile-TiO2. Microsc. Microanal. 21 (2015), pp. 140.
  • Y. Ma, P.P. Yeoh, L. Shen, J.M. Goodwill, J.A. Bain, and M. Skowronski, Evolution of the conductive filament with cycling in TaOx-based resistive switching devices. J. Appl. Phys. 128 (2020), pp. 194501.
  • G. Niu, P. Calka, P. Huang, S.U. Sharath, S. Petzold, A. Gloskovskii, K. Frohlich, Y. Zhao, J. Kang, M.A. Schubert, F. Baerwolf, W. Ren, Z.G. Ye, E. Perez, C. Wenger, L. Alff, and T. Schroeder, Operando diagnostic detection of interfacial oxygen ‘breathing’ of resistive random access memory by bulk-sensitive hard X-ray photoelectron spectroscopy. Mater. Res. Lett. 7(3) (2019), pp. 117.
  • A.K. Singh, S. Blonkowski, and M. Kogelschatz, Resistive switching study in HfO2 based resistive memories by conductive atomic force microscopy in vacuum. J. Appl. Phys. 124(1) (2018), pp. 14501/1.
  • C. Baeumer, R. Valenta, C. Schmitz, A. Locatelli, T.O. Mentes, S.P. Rogers, A. Sala, N. Raab, S. Nemsak, M. Shim, C.M. Schneider, S. Menzel, R. Waser, and R. Dittmann, Subfilamentary networks cause cycle-to-cycle variability in memristive devices. ACS Nano. 11(7) (2017), pp. 6921.
  • U. Celano, J. Op de Beeck, S. Clima, M. Luebben, P.M. Koenraad, L. Goux, I. Valov, and W. Vandervorst, Direct probing of the dielectric scavenging-layer interface in oxide filamentary-based valence change memory. ACS Appl. Mater. Interfaces 9(12) (2017), pp. 10820–10824.
  • S. Kumar, Z. Wang, X. Huang, N. Kumari, N. Davila, J.P. Strachan, D. Vine, A.L. David Kilcoyne, Y. Nishi, and R.S. Williams, Oxygen migration during resistance switching and failure of hafnium oxide memristors. Appl. Phys. Lett. 110(10) (2017), pp. 103503.
  • B.D. Hoskins, G.C. Adam, E. Strelcov, N. Zhitenev, A. Kolmakov, D.B. Strukov, and J.J. McClelland, Stateful characterization of resistive switching TiO2 with electron beam induced currents. Nat. Commun. 8 (2017), pp. 1972/1.
  • K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films. Adv. Mater. 22(3) (2010), pp. 411.
  • M. Kubicek, R. Schmitt, F. Messerschmitt, and J.L.M. Rupp, Uncovering two competing switching mechanisms for epitaxial and ultrathin strontium titanate-based resistive switching bits. ACS Nano 9 (2015), pp. 10737.
  • H. Zhang, S. Yoo, S. Menzel, C. Funck, F. Cueppers, D.J. Wouters, C.S. Hwang, R. Waser, and S. Hoffmann-Eifert, Understanding the coexistence of two bipolar resistive switching modes with opposite polarity in Pt/TiO2/Ti/Pt nanosized ReRAM devices, ACS Appl. Mater. Interfaces 10(35) (2018), pp. 29766.
  • F. Miao, J.J.H. Yang, J. Borghetti, G. Medeiros-Ribeiro, and R.S. Williams, Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current, Nanotechnology 22(11) (2011), pp. 254007/1.
  • A. Schönhals, C.M.M. Rosario, S. Hoffmann-Eifert, R. Waser, S. Menzel, and D.J. Wouters, Adv. Electron. Mater. 4(2) (2017), pp. 1700243/1.
  • A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, and R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22 (2011), pp. 485203.
  • M. von Witzleben, T. Hennen, A. Kindsmüller, S. Menzel, R. Waser, and U. Böttger, Study of the SET switching event of VCM-based memories on a picosecond timescale. J. Appl. Phys. 127(20) (2020), pp. 204501.
  • V.V. Zhirnov, R.K. Cavin, S. Menzel, E. Linn, S. Schmelzer, D. Bräuhaus, C. Schindler, and R. Waser, Memory devices: Energy–space–time tradeoffs. Proc. IEEE 98(12) (2010), pp. 2185.
  • V. Zhirnov and T. Mikolajick, Flash memories, in Nanoelectronics and Information Technology, 3rd ed., R. Waser, ed., Wiley-VCH, 2012, p. 621.
  • A. Chen, A review of emerging non-volatile memory (NVM) technologies and applications. Solid State Electron. 125 (2016), pp. 25.
  • S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, and N. Ramaswamy, A copper ReRAM cell for storage class memory applications, 2014 IEEE Symposium on VLSI Technology, Honolulu, Hi, USA, 2014. doi:10.1109/VLSIT.2014.6894368
  • H. Wu, X.H. Wang, B. Gao, N. Deng, Z. Lu, B. Haukness, G. Bronner, and H. Qian, Resistive random access memory for future information processing system. Proc. IEEE 105(9) (2017), pp. 1770.
  • G.W. Burr, Storage class memory, Non-Volatile Memories Workshop, San Diego, CA, USA, 2010.
  • G. Burr, B. Kurdi, J. Scott, C. Lam, K. Gopalakrishnan, and R. Shenoy, Overview of candidate device technologies for storage-class memory. IBM J. Res. Develop. 52(4–5) (2008), pp. 449.
  • T.W. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33 (1962), pp. 2669.
  • M.A. Lampert, simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 103(6) (1956), pp. 1648.
  • M.A. Lampert, Double injection in insulators. Phys. Rev. 125(1) (1962), pp. 126.
  • J.F. Gibbons and W.E. Beadle, Switching properties of thin Nio films. Solid-State Electron. 7(11) (1964), pp. 785.
  • W.R. Hiatt and T.W. Hickmott, Bistable switching in niobium oxide diodes. Appl. Phys. Lett. 6 (1965), pp. 106.
  • K.L. Chopra, Avalanche-induced negative resistance in thin oxide films. J. Appl. Phys. 36 (1965), pp. 184.
  • J.G. Simmons and R.R. Verderber, New thin-film resistive memory. Radio Electron. Eng. 34 (1967), pp. 81.
  • F. Argall, Switching phenomena in titanium oxide thin films. Solid State Electron. 11(5) (1968), pp. 535.
  • T.W. Hickmott, Electroluminescence, bistable switching, and dielectric breakdown of Nb2O5 diodes. J. Vac. Sci. Technol. 6(5) (1969), pp. 828.
  • H.J. Hovel and J.J. Urgell, Switching and memory characteristics of ZnSe - Ge heterojunctions, J Appl Phys. 42 (1971), pp. 5076. doi:10.1063/1.1659895
  • Y. Hirose and H. Hirose, Polarity-dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous As2S3films. J Appl Phys. 47(6) (1976), pp. 2767.
  • W.W. Zhuang, W. Pan, B.D. Ulrich, J.J. Lee, L. Stecker, A. Burmaster, D.R. Evans, S.T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S.Q. Liu, N.J. Wu, and A. Ignatiev, Ignatiev Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM), 2002 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2002. doi:10.1109/IEDM.2002.1175811
  • K. Terabe, T. Hasegaw, T. Nakayama, and M. Aono, Quantum point contact switch realized by solid electrochemical reaction, Riken Rev. 37 (2001), pp. 7.
  • K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Quantized conductance atomic switch. Nature 433(6) (2005), pp. 47.
  • H.Y. Lee, P.S. Chen, T.Y. Wu, Y.S. Chen, C.C. Wang, P.J. Tzeng, C.H. Lin, F. Chen, C.H. Lien, and M.J. Tsai, Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM, 2008 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2008. doi:10.1109/IEDM.2008.4796677
  • K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5(4) (2006), pp. 312.
  • M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, and B.P. Andreasson, Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19 (2007), pp. 2232.
  • Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada, R. Azuma, K. Shimakawa, H. Sugaya, T. Takagi, R. Yasuhara, H. Horiba, H. Kumigashira, and M. Oshima, Highly reliable TaOx ReRAM and direct evidence of Redox reaction mechanism, 2008 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2008. doi:10.1109/IEDM.2008.4796676
  • D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5(2) (2010), pp. 148.
  • D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, The missing memristor found. Nature 453(7191) (2008), pp. 80.
  • L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5) (1971), pp. 507.
  • T.-Y. Liu, T.H. Yan, R. Scheuerlein, Y. Chen, J.K. Lee, G. Balakrishnan, G. Yee, H. Zhang, A. Yap, J. Ouyang, T. Sasaki, S. Addepalli, A. Al-Shamma, C.-Y. Chen, M. Gupta, G. Hilton, S. Joshi, A. Kathuria, V. Lai, D. Masiwal, M. Matsumoto, A. Nigam, A. Pai, J. Pakhale, C.H. Siau, X. Wu, R. Yin, L. Peng, J.Y. Kang, S. Huynh, H. Wang, N. Nagel, Y. Tanaka, M. Higashitani, T. Minvielle, C. Gorla, T. Tsukamoto, T. Yamaguchi, M. Okajima, T. Okamura, S. Takase, T. Hara, H. Inoue, L. Fasoli, M. Mofidi, R. Shrivastava, and K. Quader, A 130.7mm 2 2-layer 32Gb ReRAM memory device in 24nm technology, 2013 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2013. doi:10.1109/ISSCC.2013.6487703
  • R. Fackenthal, M. Kitagawa, W. Otsuka, K. Prall, D. Mills, K. Tsutsui, J. Javanifard, K. Tedrow, T. Tsushima, Y. Shibahara, and G. Hush, A 16Gb ReRAM with 200MB/s write and 1GB/s read in 27nm technology, 2014 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 2014. doi:10.1109/ISSCC.2014.6757460
  • W.H. Chen, C. Dou, K.X. Li, W.Y. Lin, P.Y. Li, J.H. Huang, J.H. Wang, W.C. Wei, C.X. Xue, Y.C. Chiu, Y.C. King, C.J. Lin, R.S. Liu, C.C. Hsieh, K.T. Tang, J.J. Yang, M.S. Ho, and M.F. Chang, CMOS-integrated memristive non-volatile computing-in-memory for AI edge processors. Nat. Electron. 2(9) (2019), pp. 420.
  • P. Lin, C. Li, Z. Wang, Y. Li, H. Jiang, W. Song, M. Rao, Y. Zhuo, N.K. Upadhyay, M. Barnell, Q. Wu, J.J. Yang, and Q. Xia, Three-dimensional memristor circuits as complex neural networks. Nat. Electron. 3(4) (2020), pp. 225.
  • L.O. Chua, The fourth element. Proc. IEEE 100(6) (2012), pp. 1920.
  • Y.V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems. Adv. Phys. 60(2) (2011), pp. 145.
  • E. Linn, A. Siemon, R. Waser, and S. Menzel, Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Trans Circuits Syst Part I Regular Papers (TCAS-I) 61(8) (2014), pp. 2402.
  • S. Vongehr and X. Meng, The missing memristor has not been found. Sci. Rep. 5 (2015), Article no. 11657.
  • M. Di Ventra and Y.V. Pershin, On the physical properties of memristive, memcapacitive and meminductive systems, Nanotechnology 24(25), Article no. 255201. doi:10.1088/0957-4484/24/25/255201
  • Y.V. Pershin and M. Di Ventra, Bifurcation analysis of a TaO memristor model. J. Phys. D Appl. Phys. 52 (2019), pp. 1.
  • H. Schmalzried (ed.), Chemical Kinetics of Solids, Wiley-VCH, Weinheim, 1995.
  • J. Maier (ed.), Physical Chemistry of Ionic Materials, Wiley, Chichester, 2004.
  • H. Schmalzried and A. Navrotsky, Festkörperthermodynamik, Verlag Chemie (2004), pp. 122.
  • S.P. Garg, N. Krishnamurthy, A. Awasthi, and M. Venkatraman, The O-Ta (Oxygen-Tantalum) system. J. Phase Equilib. 17 (1996), pp. 63.
  • H. Okamoto, Hf-O (Hafnium-Oxygen). J. Phase Equilib. Diffus. 29(1) (2008), pp. 124.
  • P.A. Cox (ed.), The Electronic Structure and Chemistry of Solids, Oxford Science Publications, Oxford, 1987.
  • S. Blügel and G. Bihlmeyer (eds.), Electronic Structure of Matter, Forschungszentrum Jülich, Juelich, 2016.
  • F.A. Kroger and H.J. Vink, Relations between the concentrations of imperfections in crystalline solids, Solid State Phy. Adv. Res. Appl. 3 (1956), pp. 307.
  • J. Ghijsen, L. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. Sawatzky, and M. Czyzyk, Electronic structure of Cu2O and CuO. Phys. Rev. B 38(16) (1988), pp. 11322.
  • K. Gomann, G. Borchardt, M. Schulz, A. Gomann, W. Maus-Friedrichs, B. Lesage, O. Kaitasov, S. Hoffmann-Eifert, and T. Schneller, Sr diffusion in undoped and La-doped SrTiO3single crystals under oxidizing conditions. Phys. Chem. Chem. Phys. 7(9) (2005), pp. 2053.
  • R.A. De Souza, Oxygen diffusion in SrTiO3and related perovskite oxides. Adv. Funct. Mater. 25(40) (2015), pp. 6326.
  • H. Ihrig, On the polaron nature of the charge transport in BaTiO3, J. Phys. 9(18) (1976), pp. 3469.
  • R. Moos and K.H. Haerdtl, Electronic transport properties of Sr1−xLaxTiO3ceramics. J. Appl. Phys. 60(1) (1996), pp. 393–400.
  • H. Muta, K. Kurosaki, and S. Yamanaka, Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3. J. Alloys Compd. 392(1–2) (2005), pp. 306.
  • S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals. J. Appl. Phys. 97(3) (2005), pp. 034106.
  • A. Spinelli, M.A. Torija, C. Liu, C. Jan, and C. Leighton, Electronic transport in doped SrTiO3: Conduction mechanisms and potential applications. Phys. Rev. B 81(15) (2010), pp. 155110/1.
  • E. Mikheev, B. Himmetoglu, A.P. Kajdos, P. Moetakef, T.A. Cain, C. Van de Walle, and S. Stemmer, Limitations to the room temperature mobility of two- and three-dimensional electron liquids in SrTiO3. Appl. Phys. Lett. 106 (2015), pp. 062102.
  • C. Linderalv, A. Lindman, and P. Erhart, A unifying perspective on oxygen vacancies in wide band gap oxides. J. Phys. Chem. Lett. 9(1) (2018), pp. 222.
  • F. Miao, W. Yi, I. Goldfarb, J.J. Yang, M.X. Zhang, M.D. Pickett, J.P. Strachan, G. Medeiros-Ribeiro, and R.S. Williams, Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano 6(3) (2012), pp. 2312.
  • I. Goldfarb, F. Miao, J.J. Yang, W. Yi, J.P. Strachan, M.X. Zhang, M.D. Pickett, G. Medeiros-Ribeiro, and R.S. Williams, Electronic structure and transport measurements of amorphous transition-metal oxides: Observation of Fermi glass behavior. Appl. Phys. A Mater. Sci. Process 107(1) (2012), pp. 1.
  • N. Kaiser, T. Vogel, A. Zintler, S. Petzold, A. Arzumanov, E. Piros, R. Eilhardt, L. Molina-Luna, and L. Alff, Defect-stabilized substoichiometric polymorphs of hafnium oxide with semiconducting properties. ACS Appl. Mater. Interfaces (2022). doi:10.1021/acsami.1c09451
  • C. Xu, H. Du, A.J.H. van der Torren, J. Aarts, C. Jia, and R. Dittmann, Formation mechanism of Ruddlesden-Popper-type antiphase boundaries during the kinetically limited growth of Sr rich SrTiO3 thin films. Sci. Rep. 6 (2016), pp. 38296.
  • J. Van Landuyt and S. Amelinckx, On the generation mechanism for shear planes in shear structures. J. Solid State Chem. 6 (1973), pp. 222.
  • R. Waser and R. Hagenbeck, Grain boundaries in dielectric and mixed-conducting ceramics. Acta Mater. 48(4) (2000), pp. 797.
  • D. Marrocchelli, L. Sun, and B. Yildiz, Dislocations in SrTiO3: easy to reduce but not so fast for oxygen transport. J. Am. Chem. Soc. 137(14) (2015), pp. 4735.
  • R.A. De Souza, J. Fleig, J. Maier, O. Kienzle, Z. Zhang, W. Sigle, and M. Ruhle, Electrical and structural characterization of a low-angle tilt grain boundary in iron-doped strontium titanate. J. Am. Ceram. Soc. 86(6) (2003), pp. 922.
  • K.K. Adepalli, J. Yang, J. Maier, H.L. Tuller, and B. Yildiz, Tunable oxygen diffusion and electronic conduction in srtio3by dislocation-induced space charge fields. Adv. Funct. Mater. 27 (2017), pp. 1700243.
  • N.F. Mott and E.A. Davis (eds.), Electronic Processes in Non-Crystalline Materials, Clarendon-Press, Oxford, 1971.
  • P. Anderson, Model for the electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34(15) (1975), pp. 953.
  • M.H. Cohen, H. Fritzsche, and S.R. Ovshinsky, Simple band model for amorphous semiconducting alloys. Phys. Rev. Lett. 22 (1969), pp. 1065.
  • C. Arhammar, A. Pietzsch, N. Bock, E. Holmström, C. Moyses Araujo, J. Gråsjö, S. Zhao, S. Green, T. Peery, F. Hennies, S. Amerioun, A. Föhlisch, J. Schlappa, T. Schmitt, V.N. Strocov, G.A. Niklasson, D.C. Wallace, J.-E. Rubensson, B. Johansson, and R. Ahu, Unveiling the complex electronic structure of amorphous metal oxides. PNAS 108 (2011), pp. 6355.
  • J.E. Medvedeva, D. Bruce Buchholz, and R.P.H. Chang, Recent advances in understanding the structure and properties of amorphous oxide semiconductors. Adv. Electron. Mater. 3 (2017), pp. 1700082.
  • R. Wernicke, Kinetics of equilibrium restoration in barium-titanate ceramics, in Defect Chemistry and Electrical-Conductivity of Doped Barium-Titanate Ceramics, Philips Research Reports, 1976. p. 526.
  • N.F. Mott and R.W. Gurney (eds.), Electronic Processes in Ionic Crystals, Clarendon Press, Oxford, 1950.
  • A.R. Genreith-Schriever and R.A. De Souza, Field-enhanced ion transport in solids: reexamination with molecular dynamics simulations. Phys. Rev. B Condens. Matter. 94(22) (2016), pp. 224304.
  • D. Shin and H.-I. Yoo, Oxygen thermomigration in acceptor-doped perovskite. PCCP 19 (2017), pp. 11120.
  • R. Moos and K.H. Härdtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000° and 1400°C. J. Am. Ceram. Soc. 80(10) (1997), pp. 2549.
  • T.G. Stratton, D. Reed, and H.L. Tuller, Study of boundary effects in stabilized zirconia electrolytes, in Advances in Ceramics, Vol. 1, L. M. Levinson, ed., The American Ceramic Society, Columbus, OH, 1980, pp. 114–123.
  • R. De Souza, Transport properties of dislocations in SrTiO3 and other perovskites. Curr. Opin. Solid State Mater. Sci. 25(4) (2021), pp. 100923.
  • V. Metlenko, A. Ramadan, F. Gunkel, H. Du, H. Schraknepper, S. Hoffmann-Eifert, R. Dittmann, R. Waser, and R. De Souza, Do dislocations act as atomic autobahns for oxygen in the perovskite oxide SrTiO3? Nanoscale 6(21) (2014), pp. 12864.
  • T. Heisig, J. Kler, H. Du, C. Baeumer, F. Hensling, M. Glöß, M. Moors, A. Locatelli, T.O. Mentes, and F. Genuzio, Antiphase boundaries constitute fast cation diffusion paths in SrTiO3 memristive devices advanced functional materials, AFM 25 (2020), pp. 2004118.
  • R. Waser (ed.), Nanoelectronics and Information Technology, Wiley-VCH, Berlin, 2012.
  • V.F. Gantmakher (ed.), Electrons and Disorder in Solids, Clarendon Press, Oxford, 2005.
  • T. Baiatu, R. Waser, and K.H. Hardtl, DC electrical degradation of perovskite-type titanates: III, a model of the mechanism. J. Am. Ceram. Soc. 73(6) (1990), pp. 1663.
  • A. Marchewka, D. Cooper, C. Lenser, S. Menzel, H. Du, R. Dittmann, R.E. Dunin-Borkowski, and R. Waser, Determination of the electrostatic potential distribution in Pt/Fe:SrTiO3/Nb:SrTiO3 thin-film structures by electron holography. Sci. Rep. 4 (2014), pp. 6975.
  • D.R. Wolters and J.J. van der Schoot, Kinetics of charge trapping in dielectrics. J. Appl. Phys. 58(2) (1985), pp. 831.
  • D. Wolters and J. Vanderschoot, Dielectric-breakdown in MOS devices. 1. Defect-related and intrinsic breakdown, Philips J. Res. 40(3) (1985), pp. 115.
  • D. Wolters and J. Vanderschoot, Dielectric-breakdown in MOS devices. 2. Conditions for the intrinsic breakdown, Philips J. Res. 40(3) (1985), pp. 137.
  • S. Lombardo, J.H. Stathis, B.P. Linder, K.L. Pey, F. Palumbo, and C.H. Tung, Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98(12) (2005), pp. 121301.
  • J.H. Stathis, Percolation models for gate oxide breakdown. J. Appl. Phys. 86(10) (1999), pp. 5757.
  • R. Degraeve, G. Groeseneken, R. Bellens, J. Ogier, M. Depas, P. Roussel, and H. Maes, New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE Trans.Electr. Dev. 45 (1998), pp. 904.
  • J. Sune, New physics-based analytic approach to the thin-oxide breakdown statistics. IEEE Electron. Device Lett. 22(6) (2001), pp. 296.
  • J. McPherson, J. Kim, A. Shanware, and H. Mogul, Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82(13) (2003), pp. 2121.
  • J. McPherson, R. Khamankar, and A. Shanware, Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88(9) (2000), pp. 5351.
  • S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.W. Kim, C.U. Jung, S. Seo, M.J. Lee, and T.W. Noh, Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20(6) (2008), pp. 1154.
  • N. Raghavan, A. Fantini, R. Degraeve, P. Roussel, L. Goux, B. Govoreanu, D. Wouters, G. Groeseneken, and M. Jurczak, Statistical insight into controlled forming and forming free stacks for HfOx RRAM. Microelect. Eng. 109 (2013), pp. 177.
  • A. Padovani, L. Larcher, O. Pirrotta, L. Vandelli, and G. Bersuker, Microscopic modeling of HfO x RRAM operations: From forming to switching. IEEE Trans. Electron Devices 62(6) (2015), pp. 1998.
  • A. Padovani, D.Z. Gao, A.L. Shluger, and L. Larcher, A microscopic mechanism of dielectric breakdown in SiO2films: An insight from multi-scale modeling. J. Appl. Phys. 121 (2017), pp. 155101.
  • C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix, J. Nodin, H. Feldis, A. Persico, J. Cluzel, P. Lorenzi, L. Massari, R. Rao, F. Irrera, F. Aussenac, C. Carabasse, M. Coue, P. Calka, E. Martinez, L. Perniola, P. Blaise, Z. Fang, Y. Yu, G. Ghibaudo, D. Deleruyelle, M. Bocquet, C. Müller, A. Padovani, O. Pirrotta, L. Vandelli, L. Larcher, G. Reimbold, and B. De Salvo, Experimental and theoretical study of electrode effects in HfO2 based RRAM, 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2011. doi:10.1109/IEDM.2011.6131634
  • G. Bersuker, D.C. Gilmer, D. Veksler, P. Kirsch, L. Vandelli, A. Padovani, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, and M. Nafria, Metal oxide resistive memory switching mechanism based on conductive filament properties. J. Appl. Phys. 110(12) (2011), pp. 124518.
  • S. Menzel and R. Waser, Mechanism of memristive switching in OxRAM, in Advances in Non-Volatile Memory and Storage Technology, 2nd ed., Y. Nishi and B. Magyari-Köpe, eds., Woodhead Publishing, Cambridge, USA, 2019, p. 137.
  • T. Menke, P. Meuffels, R. Dittmann, K. Szot, and R. Waser, Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3. J. Appl. Phys. 105(6) (2009), pp. 066104.
  • T. Menke, R. Dittmann, P. Meuffels, K. Szot, and R. Waser, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells. J. Appl. Phys. 106(11) (2009), pp. 114507.
  • S.B. Lee, H.K. Yoo, S.H. Chang, L.G. Gao, B.S. Kang, M. Lee, C.J. Kim, and T.W. Noh, Time-dependent current-voltage curves during the forming process in unipolar resistance switching, Appl. Phys. Lett. 98(5) (2011), pp. 53503/1.
  • S.B. Lee, D.H. Kwon, K. Kim, H.K. Yoo, S. Sinn, M. Kim, B. Kahng, and B.S. Kang, Avoiding fatal damage to the top electrodes when forming unipolar resistance switching in nano-thick material systems, J. Phys. D Appl. Phys. 45(25) (2012), pp. 255101/1.
  • A.A. Sharma, I.V. Karpov, R. Kotlyar, J. Kwon, M. Skowronski, and J.A. Bain, Dynamics of electroforming in binary metal oxide-based resistive switching memory. J. Appl. Phys. 118(11) (2015), pp. 114903/1.
  • A. Sharma, M. Noman, M. Abdelmoula, M. Skowronski, and J. Bain, Electronic instabilities leading to electroformation of binary metal oxide-based resistive switches. Adv. Funct. Mater. 24 (2014), pp. 5522.
  • D.S. Jeong, H. Schroeder, U. Breuer, and R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104(12) (2008), pp. 123716/1.
  • C. Nauenheim, C. Kuegeler, A. Ruediger, and R. Waser, Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions. Appl. Phys. Lett. 96(12) (2010), pp. 122902.
  • L. Zhang, Y.Y. Hsu, F.T. Chen, H.Y. Lee, Y.S. Chen, W.S. Chen, P.Y. Gu, W.H. Liu, S.M. Wang, C.H. Tsai, R. Huang, and M.J. Tsai, Experimental investigation of the reliability issue of RRAM based on high resistance state conduction. Nanotechnology 22(25) (2011), pp. 254016/1.
  • C. Lenser, M. Patt, S. Menzel, A. Köhl, C. Wiemann, C.M. Schneider, R. Waser, and R. Dittmann, Insights into nanoscale electrochemical reduction in a memristive oxide: The role of three-phase boundaries. Adv. Funct. Mat. 24(28) (2014), pp. 4466.
  • H. Kim and D.W. Kim, Transport characteristics and surface potential distribution of electrically stressed TiO2 single crystals. Appl. Phys. A Mater. Sci. Process 102(4) (2011), pp. 949.
  • S. Ambrogio, V. Milo, Z.Q. Wang, S. Balatti, and D. Ielmini, Analytical modeling of current overshoot in oxide-based resistive switching memory (RRAM). IEEE Electron Device Lett. 37(10) (2016), pp. 1268.
  • V. Havel, Transient processes in resistive switching memory devices at ultimate time scale down to sub-nanosecond range, PhD Thesis, RWTH Aachen University, 2016. doi:10.18154/RWTH-2016-02755
  • T. Hennen, E. Wichmann, A. Elias, J. Lille, O. Mosendz, R. Waser, D.J. Wouters, and D. Bedau, Current-limiting amplifier for high speed measurement of resistive switching data. Rev. Sci. Instrum. 92 (2021), pp. 054701.
  • C.B. Lee, D. Lee, A. Benayad, S.R. Lee, M. Chang, M.-J. Lee, J.-H. Hur, Y.-B. Kim, C.-J. Kim, and U.-I. Chung, Highly uniform switching of tantalum embedded amorphous oxide using self-compliance bipolar resistive switching. IEEE Electron Device Lett. 32(3) (2011), pp. 399.
  • W.S. Chen, T.Y. Wu, S.Y. Yang, W.H. Liu, H.Y. Lee, Y.S. Chen, C.H. Tsai, P.Y. Gu, K.H. Tsai, P.S. Chen, H.W. Wei, P.S. Chen, Y.H. Wang, F.T. Chen, and M. Tsai, Stabilization of resistive switching with controllable self-compliant Ta2O5-based RRAM, 2012 International Symposium on VLSI Technology, Systems and Applications Hsinchu, Taiwan, 2012. doi:10.1109/VLSI-TSA.2012.6210099
  • B. Govoreanu, G.S. Kar, Y-Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I.P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D.J. Wouters, J.A. Kittl, and M. Jurczak, 10x10 nm2 Hf/HfOx Crossbar resistive RAM with excellent performance, reliability and low-energy operation, 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2011. doi:10.1109/IEDM.2011.6131652
  • Y. Chen, W. Chien, M. Lee, Y. Chen, A.T.H. Chuang, T. Hong, S. Lin, T. Wu, and C. Lu, Evaluation of the WOx film properties for resistive random access memory application, Jpn. J. Appl. Phys. 51 (2012), Article no. 04DD15.
  • Y.S. Chen, H.Y. Lee, P.S. Chen, P.Y. Gu, W.H. Liu, W.S. Chen, Y.Y. Hsu, C.H. Tsai, F. Chen, M.J. Tsai, and C. Lien, Good endurance and memory window for Ti/HfOx pillar RRAM at 50-nm scale by optimal encapsulation layer. IEEE Electron Device Lett. 32(3) (2011), pp. 390.
  • S.U. Sharath, T. Bertaud, J. Kurian, E. Hildebrandt, C. Walczyk, P. Calka, P. Zaumseil, M. Sowinska, D. Walczyk, A. Gloskovskii, T. Schroeder, and L. Alff, Towards forming-free resistive switching in oxygen engineered HfO2−x. Appl. Phys. Lett. 104 (2014), pp. 063502.
  • S.U. Sharath, J. Kurian, P. Komissinskiy, E. Hildebrandt, T. Bertaud, C. Walczyk, P. Calka, T. Schroeder, and L. Alff, Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories. Appl. Phys. Lett. 105(7) (2014), pp. 73505/1.
  • J.E. Stevens, A.J. Lohn, S.A. Decker, B.L. Doyle, P.R. Mickel, and M.J. Marinella, Reactive sputtering of substoichiometric Ta2Ox for resistive memory applications. J Vacuum Sci Technol A 32 (2014), pp. 021501.
  • S.U. Sharath, M.J. Joseph, S. Vogel, E. Hildebrandt, P. Komissinskiy, J. Kurian, T. Schroeder, and L. Alff, Impact of oxygen stoichiometry on electroforming and multiple switching modes in TiN/TaOx/Pt based ReRAM. Appl. Phys. Lett. 109(17) (2016), pp. 173503/1.
  • K. Skaja, M. Andrae, V. Rana, R. Waser, R. Dittmann, and C. Baeumer, Reduction of the forming voltage through tailored oxygen non-stoichiometry in tantalum oxide ReRAM devices. Sci. Rep. 8 (2018), pp. 10861/1.
  • M. Lanza, G. Bersuker, M. Porti, E. Miranda, M. Nafria, and X. Aymerich, Resistive switching in hafnium dioxide layers: Local phenomenon at grain boundaries. Appl. Phys. Lett. 101(19) (2012), pp. 193502.
  • G. Bersuker, J. Yum, L. Vandelli, A. Padovani, L. Larcher, V. Iglesias, M. Porti, M. Nafria, K. McKenna, A. Shluger, P. Kirsch, and R. Jammy, Grain boundary-driven leakage path formation in HfO2 dielectrics. Solid State Electron. 65–66 (2011), pp. 146.
  • L. Vandelli, A. Padovani, L. Larcher, G. Bersuker, D. Gilmer, and P. Pavan, Modeling of the forming operation in HfO2-based resistive switching memories, 2011 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2011. doi:10.1109/IMW.2011.5873224
  • C. Lenser, Z. Connell, A. Kovacs, R. Dunin-Borkowski, A. Koehl, R. Waser, and R. Dittmann, Identification of screw dislocations as fast-forming sites in Fe-doped SrTiO3. Appl. Phys. Lett. 102 (2013), pp. 183504.
  • A. Koehl, H. Wasmund, A. Herpers, P. Guttmann, S. Werner, K. Henzler, H. Du, J. Mayer, R. Waser, and R. Dittmann, Evidence for multifilamentary valence changes in resistive switching SrTiO3devices detected by transmission X-ray microscopy. APL Mater. 1 (2013), pp. 042102.
  • S.K. Nandi, X. Liu, D.K. Venkatachalam, and R.G. Elliman, Effect of electrode roughness on electroforming in HfO2 and defect-induced moderation of electric-field enhancement. Phys. Rev. Appl. 4(6) (2015), pp. 64010/1.
  • M.S. Munde, A. Mehonic, W.H. Ng, M. Buckwell, L. Montesi, M. Bosman, A.L. Shluger, and A.J. Kenyon, Intrinsic resistance switching in amorphous silicon suboxides: The role of columnar microstructure. Sci. Rep. 7 (2017), pp. 9274/1.
  • Q. Liu, S. Long, H. Lv, W. Wang, J. Niu, Z. Huo, J. Chen, and M. Liu, Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4(10) (2010), pp. 6162.
  • C. Lee, I. Kim, H. Shin, S. Kim, and J. Cho, Nonvolatile memory properties of Pt nanoparticle-embedded TiO2 nanocomposite multilayers via electrostatic layer-by-layer assembly, Nanotechnology 21(18) (2010), pp. 185704/1.
  • N. Raab, D.O. Schmidt, H. Du, M. Kruth, U. Simon, and R. Dittmann, Au nanoparticles as template for defect formation in memristive SrTiO3 thin films. Nanomaterials 8 (2018), pp. 869.
  • K.-Y. Shin, Y. Kim, F.V. Antolinez, J.S. Ha, S.-S. Lee, and J.H. Park, Controllable formation of nanofilaments in resistive memories via tip-enhanced electric fields. Adv. Electron. Mater. 2(10) (2016), pp. 1600233.
  • J. Lee, C. Du, K. Sun, E. Kioupakis, and W.D. Lu, Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano 10(3) (2016), pp. 3571.
  • S. Choi, S.H. Tan, Z. Li, Y. Kim, C. Choi, P. Chen, H. Yeon, S. Yu, and J. Kim, SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations, Nat. Mater. 17 (2018), pp. 335–340.
  • S. Stille, C. Lenser, R. Dittmann, A. Koehl, I. Krug, R. Muenstermann, J. Perlich, C.M. Schneider, U. Klemradt, and R. Waser, Detection of filament formation in forming-free resistive switching SrTiO3devices with Ti top electrodes. Appl. Phys. Lett. 100(22) (2012), pp. 223503/1.
  • S. Clima, K. Sankaran, Y.Y. Chen, A. Fantini, U. Celano, A. Belmonte, L. Zhang, L. Goux, B. Govoreanu, R. Degraeve, D.J. Wouters, M. Jurczak, W. Vandervorst, S. De Gendt, and G. Pourtois, RRAMs based on anionic and cationic switching: A short overview. Phys. Stat. Solid Rapid Res. Lett. 8(6) (2014), pp. 501.
  • F. Nardi, S. Larentis, S. Balatti, D. Gilmer, and D. Ielmini, Resistive switching by voltage-driven ion migration in bipolar RRAM – part I: Experimental study. IEEE Trans. Electron Devices 59(9) (2012), pp. 2461.
  • B. Butcher, S. Koveshnikov, D. Gilmer, G. Bersuker, M. Sung, A. Kalantarian, C. Park, R. Geer, Y. Nishi, P. Kirsch, and R. Jammy, High endurance performance of 1T1R HfOx based RRAM at low (<20μA) operative current and elevated (150°C) temperature, 2011 IEEE International Integrated Reliability Workshop Final Report, South Lake Tahoe, CA, USA, 2011. doi:10.1109/IIRW.2011.6142611
  • A. Prakash, S. Maikap, C.S. Lai, H.Y. Lee, W.S. Chen, F.T. Chen, M.J. Kao, and M.J. Tsai, Improvement of uniformity of resistive switching parameters by selecting the electroformation polarity in IrOx/TaOx/WOx/W structure, Jpn. J. Appl. Phys. 51(4) (2012), pp. 4DD06/1.
  • D. Jana, S. Maikap, T.C. Tien, H.Y. Lee, W. Chen, F.T. Chen, M. Kao, and M. Tsai, Formation-polarity-dependent improved resistive switching memory performance using IrOx/GdOx/WOx/W structure. Jpn. J. Appl. Phys. 51 (2012), pp. 04DD17.
  • A. Kalantarian, G. Bersuker, D.C. Gilmer, D. Veksler, B. Butcher, A. Padovani, O. Pirrotta, L. Larcher, R. Geer, Y. Nishi, and P. Kirsch, Controlling uniformity of RRAM characteristics through the forming process, 2012 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, USA, 2012. doi:10.1109/IRPS.2012.6241874
  • G. Kim, J. Ho Lee, J. Yeong Seok, S. Ji Song, J. Ho Yoon, K. Jean Yoon, M. Hwan Lee, K. Min Kim, H. Dong Lee, S. Wook Ryu, T. Joo Park, and C. Seong Hwang, Improved endurance of resistive switching TiO2 thin film by hourglass shaped Magneli filaments, Appl. Phys. Lett. 98(26) (2011), pp. 262901.
  • F. Gomez-Marlasca, N. Ghenzi, P. Stoliar, M.J. Sánchez, M.J. Rozenberg, G. Leyv, and P. Levy, Asymmetric pulsing for reliable operation of titanium/manganite memristors, Appl. Phys. Lett. 98(123502) (2011), pp. 3.
  • S.B. Lee, H.K. Yoo, K. Kim, J.S. Lee, Y.S. Kim, S. Sinn, D. Lee, B.S. Kang, B. Kahng, and T.W. Noh, Forming mechanism of the bipolar resistance switching in double-layer memristive nanodevices, Nanotechnology 23(31) (2012), pp. 315202/1.
  • B. Butcher, G. Bersuker, K.G. Young-Fisher, D.C. Gilmer, A. Kalantarian, Y. Nishi, R. Geer, P.D. Kirsch, and R. Jammy, Hot forming to improve memory window and uniformity of low-power HfOx-based RRAMs, 2012 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2012. doi:10.1109/IMW.2012.6213647
  • J.J. Yang, J. Borghetti, D. Murphy, D.R. Stewart, and R.S. Williams, A family of electronically reconfigurable nanodevices. Adv. Mater. 21(37) (2009), pp. 3754.
  • J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, and R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7) (2008), pp. 429.
  • A. Nayak, Q. Wang, Y. Itoh, T. Tsuruoka, T. Hasegawa, L. Boodhoo, H. Mizuta, and M. Aono, Position detection and observation of a conducting filament hidden under a top electrode in a Ta2O5-based atomic switch. Nanotechnology 26(14) (2015), pp. 145702/1.
  • R. Muenstermann, J.J. Yang, J.P. Strachan, G. Medeiros-Ribeiro, R. Dittmann, and R. Waser, Morphological and electrical changes in TiO2memristive devices induced by electroforming and switching. Phys. Stat Solid Rapid Res. Lett. 4(1–2) (2010), pp. 16.
  • F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelly, G. Medeiros-Ribeiro, and R.S. Williams, Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv. Mater. 23 (2011), pp. 5633.
  • C. Rossel, G.I. Meijer, D. Bremaud, and D. Widmer, Electrical current distribution across a metal–insulator–metal structure during bistable switching. J. Appl. Phys. 90(6) (2001), pp. 2892.
  • Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, and K. Aono, Demonstration of high-density ReRAM ensuring 10-year retention at 85°C based on a newly developed reliability model, 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2011. doi:10.1109/IEDM.2011.6131650
  • Y. Hayakawa, A. Himeno, R. Yasuhara, W. Boullart, E. Vecchio, T. Vandeweyer, T. Witters, D. Crotti, M. Jurczak, S. Fujii, S. Ito, Y. Kawashima, Y. Ikeda, A. Kawahara, K. Kawai, Z. Wei, S. Muraoka, K. Shimakawa, T. Mikawa, and S. Yoneda, Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application, 2015 IEEE Symposium on VLSI Circuits, Kyoto, Japan, 2015. doi:10.1109/VLSIC.2015.7231381
  • K. Skaja, C. Bäumer, O. Peters, S. Menzel, M. Moors, H. Du, M. Bornhöfft, C. Schmitz, C.-L. Jia, C.M. Schneider, J. Mayer, R. Waser, and R. Dittmann, Avalanche-discharge-induced electrical forming in tantalum oxide-based metal-insulator-metal structures. Adv. Funct. Mater. 25 (2015), pp. 7154.
  • R. Dittmann, R. Muenstermann, I. Krug, D. Park, T. Menke, J. Mayer, A. Besmehn, F. Kronast, C.M. Schneider, and R. Waser, Scaling potential of local redox processes in memristive SrTiO3 thin-film devices. Proc. IEEE 100(6) (2012), pp. 1979.
  • C. Baeumer, N. Raab, T. Menke, C. Schmitz, R. Rosezin, P.M. Müller, M. Andrä, V. Feyer, R. Bruchhaus, F. Gunkel, C.M. Schneider, R. Waser, and R. Dittmann, Verification of redox-processes as switching and retention failure mechanisms in Nb:SrTiO3/metal devices. Nanoscale 8(29) (2016), pp. 13967.
  • U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14(5) (2014), pp. 2401.
  • U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst, Imaging the three-dimensional conductive channel in filamentary-based oxide resistive switching memory, Nano Lett. 15(12) (2015), pp. 7970.
  • M. Buckwell, L. Montesi, S. Hudziak, A. Mehonic, and A.J. Kenyon, Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM. Nanoscale 7 (2015), pp. 18030.
  • C. Lenser, R. Dittmann, and J.-P. Strachan, Valence change observed by nanospectroscopy and spectromicroscopy, in Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, D. Ielmini and R. Waser, Wiley, Weinheim, 2016, pp. 437–456.
  • G.I. Meijer, U. Staub, M. Janousch, S.L. Johnson, B. Delley, and T. Neisius, Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Phys. Rev. B 72 (2005), pp. 155102.
  • B.P. Andreasson, M. Janousch, U. Staub, T. Todorova, B. Delley, G.I. Meijer, and E. Pomjakushina, Detecting oxygen vacancies in SrTiO3 by3d transition-metal tracer ions. Phys. Rev. B 80(21) (2009), pp. 212103/1.
  • M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, and B.P. Andreasson, Role of oxygen vacancies in Cr-Doped SrTiO3 for resistance-change memory. Adv. Mater. 19(17) (2006), pp. 2232.
  • B.P. Andreasson, M. Janousch, U. Staub, and I.G. Meijer, Spatial distribution of oxygen vacancies in Cr-doped SrTiO3 during an electric-field-driven insulator-to-metal transition. Appl. Phys. Lett. 94(1) (2009), pp. 13513.
  • C. Lenser, A. Kuzmin, J. Purans, A. Kalinko, R. Waser, and R. Dittmann, Probing the oxygen vacancy distribution in resistive switching Fe-SrTiO3metal-insulator-metal-structures by micro-x ray absorption near-edge structure. J. Appl. Phys. 111(7) (2012), pp. 76101.
  • J.P. Strachan, J.J. Yang, R. Muenstermann, A. Scholl, G. Medeiros-Ribeiro, D.R. Stewart, and R.S. Williams, Structural and chemical characterization of TiO2 memristive devices by spatially-resolved NEXAFS. Nanotechnology 20(48) (2009), pp. 485701.
  • J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, and R.S. Williams, Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22(32) (2010), pp. 3573.
  • J.P. Strachan, D.B. Strukov, J. Borghetti, J.J. Yang, G. Medeiros-Ribeiro, and R.S. Williams, The switching location of a bipolar memristor: Chemical, thermal and structural mapping. Nanotechnology 22 (2011), pp. 254015.
  • A. Regoutz, I. Gupta, A. Serb, A. Khiat, F. Borgatti, T.L. Lee, C. Schlueter, P. Torelli, B. Gobaut, M. Light, D. Carta, S. Pearce, G. Panaccione, and T. Prodromakis, Role and optimization of the active oxide layer in TiO2-based RRAM. Adv. Funct. Mater. 26(4) (2016), pp. 507.
  • D. Carta, A.P. Hitchcock, P. Guttmann, A. Regoutz, A. Khiat, A. Serb, I. Gupta, and T. Prodromakis, Spatially resolved TiOx phases in switched RRAM devices using soft X-ray spectromicroscopy, Sci. Rep. 6 (2016), pp. 21525/1.
  • J.P. Strachan, G. Medeiros-Ribeiro, J.J. Yang, M.-X. Zhang, F. Miao, I. Goldfarb, M. Holt, V. Rose, and R.S. Williams, Spectromicroscopy of tantalum oxide memristors. Appl. Phys. Lett. 98(24) (2011), pp. 242114.
  • C. Baeumer, C. Schmitz, A.H.H. Ramadan, H. Du, K. Skaja, V. Feyer, P. Muller, B. Arndt, C. Jia, J. Mayer, R.A. De Souza, C.M. Schneider, R. Waser, and R. Dittmann, Spectromicroscopic insights for rational design of redox-based memristive devices, Nat. Commun. 6 (2015), pp. 9610.
  • C. Baeumer, C. Schmitz, A. Marchewka, D.N. Mueller, R. Valenta, J. Hackl, N. Raab, S.P. Rogers, M.I. Khan, S. Nemsak, M. Shim, S. Menzel, C.M. Schneider, R. Waser, and R. Dittmann, Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes. Nat. Commun. 7 (2016), pp. 12398.
  • A. Mehonic, M. Buckwell, L. Montesi, M.S. Munde, D. Gao, S. Hudziak, R.J. Chater, S. Fearn, D. McPhail, M. Bosman, A.L. Shluger, and A.J. Kenyon, Nanoscale transformations in metastable, amorphous, silicon-rich silica, Adv. Mater. 28 (2016), pp. 7486–7493.
  • V.R. Nallagatla, T. Heisig, C. Baeumer, V. Feyer, M. Jugovac, G. Zamborlini, C.M. Schneider, R. Waser, M. Kim, C.U. Jung, and R. Dittmann, Topotactic phase transition driving memristive behavior. Adv. Mater. 31(40) (2019), pp. 1903391/1.
  • J. Kwon, A.A. Sharma, C.M. Chen, A. Fantini, M. Jurczak, A.A. Herzing, J.A. Bain, Y.N. Picard, and M. Skowronski, Transient thermometry and high-resolution transmission electron microscopy analysis of filamentary resistive switches. ACS Appl. Mater. Interfaces 8 (2016), pp. 20176.
  • J.P. Strachan, J.J. Yang, L.A. Montoro, C.A. Ospina, A.J. Ramirez, A.L.D. Kilcoyne, G. Medeiros-Ribeiro, and R.S. Williams, Characterization of electroforming-free titanium dioxide memristors. Beilstein J. Nanotechnol. 4 (2013), pp. 467.
  • K. Szot, M. Rogala, W. Speier, Z. Klusek, A. Besmehn, and R. Waser, TiO2 – a prototypical memristive material. Nanotechnology 22(25) (2011), pp. 254001/1.
  • J. Kwon, A.A. Sharma, J.A. Bain, Y.N. Picard, and M. Skowronski, Oxygen vacancy creation, drift, and aggregation in TiO2-based resistive switches at low temperature and voltage. Adv. Funct. Mater. 25(19) (2015), pp. 2876.
  • S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, and R. Waser, Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches. Adv. Funct. Mater. 21(23) (2011), pp. 4487.
  • V. Havel, A. Marchewka, S. Menzel, S. Hoffmann-Eifert, G. Roth, and R. Waser, Electroforming of Fe:STO samples for resistive switching made visible by electrocoloration observed by high resolution optical microscopy, 2014 MRS Spring Meeting Proceedings, 2014.
  • C. Lenser, A. Koehl, I. Slipukhina, H. Du, M. Patt, V. Feyer, C.M. Schneider, M. Lezaic, R. Waser, and R. Dittmann, Formation and movement of cationic defects during forming and resistive switching in SrTiO3 thin film devices. Adv. Funct. Mater. 25(40) (2015), pp. 6360.
  • H. Du, C. Jia, A. Koehl, J. Barthel, R. Dittmann, R. Waser, and J. Mayer, Nanosized conducting filaments formed by atomic-scale defects in redox-based resistive switching memories. Chem. Mater. 29 (2017), pp. 3164.
  • Y. Ma, J.M. Goodwill, D. Li, D.A. Cullen, J.D. Poplawsky, K.L. Moore, J.A. Bain, and M. Skowronski, stable metallic enrichment in conductive filaments in TaOx-based resistive switches arising from competing diffusive fluxes. Adv. Electron. Mater. 5(7) (2019), pp. 1800954.
  • Y. Ma, D. Li, A.A. Herzing, D.A. Cullen, B.T. Sneed, K.L. More, N.T. Nuhfer, J.A. Bain, and M. Skowronski, Formation of the conducting filament in TaOx-resistive switching devices by thermal-gradient-induced cation accumulation. ACS Appl. Mater. Interfaces 10(27) (2018), pp. 23187–23197.
  • Y. Ma, D.A. Cullen, J.M. Goodwill, Q. Xu, K.L. More, and M. Skowronski, Exchange of ions across the TiN/TaOx interface during electroformation of TaOx-based resistive switching devices. ACS Appl. Mater. Interfaces 12 (2020), pp. 27378.
  • A. Marchewka, R. Waser, and S. Menzel, Physical modeling of the electroforming process in resistive-switching devices, 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, Japan, 2017. doi:10.23919/SISPAD.2017.8085282
  • S.H. Lee, J. Moon, Y. Jeong, J. Lee, X. Li, H. Wu, and W.D. Lu, Quantitative, dynamic TaOx memristor/resistive random access memory model. ACS Appl. Electron. Mater. 2(3) (2020), pp. 701.
  • R. Schmiedl, V. Demuth, P. Lahnor, H. Godehardt, Y. Bodschwinna, C. Harder, L. Hammer, H.P. Strunk, M. Schulz, and K. Heinz, Oxygen diffusion through thin Pt films on Si(100). Appl. Phys. A 62 (1996), pp. 223.
  • A. Grill, W. Kane, J. Viggiano, M. Brady, and R. Laibowitz, Base electrodes for high dielectric constant oxide materials in silicon technology. J. Mater. Res. 7(12) (1992), pp. 3260.
  • A.F. Zurhelle, W. Stehling, R. Waser, R.A. De Souza, and S. Menzel, Oxygen diffusion in platinum electrodes: A molecular dynamics study of the role of extended defects. Adv. Mater. Interfaces 9 (2021), pp. 2101257.
  • T. Bertaud, M. Sowinska, D. Walczyk, S. Thiess, A. Gloskovskii, C. Walczyk, and T. Schroeder, In-operando and non-destructive analysis of the resistive switching in the Ti/HfO2/TiN-based system by hard X-ray photoelectron spectroscopy. Appl. Phys. Lett. 101(14) (2012), pp. 143501/1.
  • R. Waser, electrochemical boundary conditions for resistance degradation of doped alkaline-Earth titanates. J. Am. Ceram. Soc. 72(12) (1989), pp. 2234.
  • D.M. Long, B. Cai, J.N. Baker, P.C. Bowes, T.J.M. Bayer, J.J. Wang, R. Wang, L.Q. Chen, C.A. Randall, D.L. Irving, and E.C. Dickey, Conductivity of iron-doped strontium titanate in the quenched and degraded states. J. Am. Ceram. Soc. 102(6) (2019), pp. 3567.
  • R. Waser, T. Baiatu, and K.H. Hardtl, DC electrical degradation of perovskite-type titanates: I, ceramics. J. Am. Ceram. Soc. 73 (1990), pp. 1645.
  • J.-J. Wang, H.-B. Huang, T.J.M. Bayer, A. Moballegh, Y. Cao, A. Klein, E.C. Dickey, D.L. Irving, C.A. Randall, and L.-Q. Chen, Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal. Acta Mater. 108 (2016), pp. 229.
  • A. Alvarez and I.-W. Chen, DC resistance degradation of SrTiO3: The role of virtual-cathode virtual-cathode needles and oxygen bubbles, J. Am. Ceram. Soc. 105 (2021), pp. 362–383.
  • P.D. Greene, E.L. Bush, and I.R. Rawlings, The forming process in metal-insulator-metal thin film memory and cold cathode devices in thin film dielectrics, 1969.
  • R. Waser, T. Baiatu, and K.H. Hardtl, DC electrical degradation of perovskite-type titanates: II, single crystals. J. Am. Ceram. Soc. 73(6) (1990), pp. 1654.
  • B.F. Donovan, D.M. Long, A. Moballegh, N. Creange, E.C. Dickey, and P.E. Hopkins, Impact of intrinsic point defect concentration on thermal transport in titanium dioxide. Acta Mater. 127 (2017), pp. 491.
  • A. Moballegh and E.C. Dickey, Electric-field-induced point defect redistribution in single-crystal TiO2– and effects on electrical transport. Acta Mater. 86 (2015), pp. 352–360.
  • E. Yalon, I. Karpov, V. Karpov, I. Riess, D. Kalaev, and D. Ritter, Detection of the insulating gap and conductive filament growth direction in resistive memories. Nanoscale 7(37) (2015), pp. 15434.
  • D. Kalaev, E. Yalon, and I. Riess, On the direction of the conductive filament growth in valence change memory devices during electroforming. Solid State Ion. 276 (2015), pp. 9.
  • E. Abbaspour, S. Menzel, A. Hardtdegen, S. Hoffmann-Eifert, and C. Jungemann, KMC simulation of the electroforming, set and reset processes in redox-based resistive switching devices. IEEE Trans. Nanotechnol. 17(6) (2018), pp. 1181.
  • Y. Yang, P. Gao, L. Li, X. Pan, S. Tappertzhofen, S. Choi, R. Waser, I. Valov, and W.D. Lu, Electrochemical dynamics of nanoscale metallic inclusions in dielectrics, Nat. Commun. 5 (2014), pp. 4232/1.
  • A. Kindsmüller, A. Meledin, J. Mayer, R. Waser, and D.J. Wouters, On the role of the metal oxide/reactive electrode interface during the forming procedure of valence change ReRAM devices. Nanoscale 11 (2019), pp. 18201.
  • H. Schroeder and D.S. Jeong, Resistive switching in a Pt/TiO2/Pt thin film stack – a candidate for a non-volatile ReRAM. Microelectron. Eng. 84 (2007), pp. 1982.
  • J.J. Yang, M. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, and R.S. Williams, High switching endurance in TaOx memristive devices, Appl. Phys. Lett. 97(23) (2010), pp. 232102/1.
  • R. Bruchhaus, C.R. Hermes, and R. Waser, Memristive switches with two switching polarities in a forming free device structure. MRS Online Proc. Lib. 1337 (2011), pp. 73.
  • Y.S. Chen, H.Y. Lee, P.S. Chen, T.Y. Wu, C.C. Wang, P.J. Tzeng, F. Chen, M.J. Tsai, and C. Lien, An ultrathin forming-free HfOx resistance memory with excellent electrical performance. IEEE Electron Device Lett. 31(12) (2010), pp. 1473.
  • Y.S. Chen, T.Y. Wu, P.J. Tzeng, P.S. Chen, H.Y. Lee, C.H. Lin, F. Chen, and M.J. Tsai, Forming-free HfO2 bipolar RRAM device with improved endurance and high speed operation, 2009 International Symposium on VLSI Technology, Systems, and Applications, Hsinchu, Taiwan, 2009. doi:10.1109/VTSA.2009.5159281
  • W. Kim, D.J. Wouters, S. Menzel, C. Rodenbücher, R. Waser, and V. Rana, Lowering forming voltage and forming-free behavior of Ta2O5 ReRAM devices, 2016 46th European Solid-State Device Research Conference (ESSDERC)), Lausanne, Switzerland, 2016. doi:10.1109/ESSDERC.2016.7599612
  • W. Kim, A. Hardtdegen, C. Rodenbücher, S. Menzel, D.J. Wouters, S. Hoffmann-Eifert, D. Buca, R. Waser, and V. Rana, Forming-free metal-oxide ReRAM by oxygen ion implantation process, 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016. doi:10.1109/IEDM.2016.7838345
  • K.M. Kim, J. Zhang, C. Graves, J.J. Yang, B.J. Choi, C.S. Hwang, Z. Li, and R.S. Williams, Low-power, self-rectifying, and forming-free memristor with an asymmetric programing voltage for a high-density crossbar application. Nano Lett. 16(11) (2016), pp. 6724.
  • T. Kempen, R. Waser, and V. Rana, 50x Endurance improvement in TaOx RRAM by extrinsic doping, 2021 IEEE International Memory Workshop (IMW), Dresden, Germany, 2021. doi:10.1109/IMW51353.2021.9439591
  • M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.-I. Chung, I.-K. Yoo, and K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat. Mater. 10(8) (2011), pp. 625.
  • M.J. Kim, I.G. Baek, Y.H. Ha, S.J. Baik, J.H. Kim, D.J. Seong, S.J. Kim, Y.H. Kwon, C.R. Lim, H.K. Park, D. Gilmer, P. Kirsch, R. Jammy, Y.G. Shin, S. Choi, and C. Chung, 2010 IEEE International Electron Devices Meeting (IEDM), 2010.
  • A. Hardtdegen, C. La Torre, F. Cüppers, S. Menzel, R. Waser, and S. Hoffmann-Eifert, Improved switching stability and the effect of an internal series resistor in HfO2/TiOx bilayer ReRAM cells. IEEE Trans. Electron Devices 65(8) (2018), pp. 3229.
  • S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, and T. Prodromakis, Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7 (2017), pp. 17532.
  • J.J. Yang, J.P. Strachan, F. Miao, M. Zhang, M.D. Pickett, W. Yi, D.A.A. Ohlberg, G. Medeiros-Ribeiro, and R.S. Williams, Metal/TiO2 interfaces for memristive switches. Appl. Phys. A Mater. Sci. Process. 102(4) (2011), pp. 785.
  • R. Waser, R. Dittmann, S. Menzel, and T. Noll, Introduction to new memory paradigms: Memristive phenomena and neuromorphic applications. Faraday Discuss. 213 (2019), pp. 11.
  • M. Sowinska, T. Bertaud, D. Walczyk, S. Thiess, M.A. Schubert, M. Lukosius, W. Drube, C. Walczyk, and T. Schroeder, Hard X-ray photoelectron spectroscopy study of the electroforming in Ti/HfO2-based resistive switching structures. Appl. Phys. Lett. 100 (2012), pp. 233509.
  • D. Carta, G. Mountjoy, A. Regoutz, A. Khiat, A. Serb, and T. Prodromakis, X-ray absorption spectroscopy study of TiO2–x thin films for memory applications. J. Phys. Chem. C 119(8) (2015), pp. 4362.
  • A. Marchewka, R. Waser, and S. Menzel, Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model, 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 2015. doi:10.1109/SISPAD.2015.7292318
  • E. Lim and R. Ismail, Conduction mechanism of valence change resistive switching memory: A survey. Electronics 4 (2015), pp. 586.
  • C. Funck and S. Menzel, Comprehensive model of electron conduction in oxide-based memristive devices. ACS Appl. Electron. 3 (2021), pp. 3674.
  • K. Kamiya, M.Y. Yang, B. Magyari-Kope, M. Niwa, Y. Nishi, and K. Shiraishi, Physics in designing desirable ReRAM stack structure - Atomistic recipes based on oxygen chemical potential control and charge injection/removal, 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012. doi:10.1109/IEDM.2012.6479078
  • P.A. Cox (ed.), Transition Metal Oxides: An Introduction to their Electronic Structure and Properties, Clarendon Press, Oxford, 1995.
  • R. Degraeve, A. Fantini, S. Clima, B. Govoreanu, L. Goux, Y.Y. Chen, D.J. Wouters, P. Roussel, G.S. Kar, G. Pourtois, S. Cosemans, J.A. Kittl, G. Groeseneken, M. Jurczak, and L. Altimime, Dynamic hour glass model for SET and RESET in HfO2 RRAM, 2012 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2012. doi:10.1109/VLSIT.2012.6242468
  • R. Degraeve, A. Fantini, N. Raghavan, L. Goux, S. Clima, Y. Chen, A. Belmonte, S. Cosemans, B. Govoreanu, D. Wouters, P. Roussel, G. Kar, G. Groeseneken, and M. Jurczak, 2014 IEEE 21st International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 2014.
  • E. Miranda, A. Mehonic, J. Sune, and A.J. Kenyon, Multi-channel conduction in redox-based resistive switch modelled using quantum point contact theory. Appl. Phys. Lett. 103(22) (2013), pp. 222904/1.
  • X. Lian, X. Cartoixa, E. Miranda, L. Perniola, R. Rurali, S. Long, M. Liu, and J. Sune, Multi-scale quantum point contact model for filamentary conduction in resistive random access memories devices. J. Appl. Phys. 115(24) (2014), pp. 244507 (8 pp.).
  • X. Lian, M. Wang, M. Rao, P. Yan, J.J. Yang, and F. Miao, Characteristics and transport mechanisms of triple switching regimes of TaOx memristor. Appl. Phys. Lett. 110 (2017), pp. 173504.
  • J. van Ruitenbeek, M.M. Masis, and E. Miranda, Quantum point contact conduction, in Resistive Switching, D. Ielimini and R. Waser, eds., Wiley-VCH, Weinheim, 2016. pp. 197.
  • R. Fang, W. Chen, L. Gao, W. Yu, and S. Yu, Low-temperature characteristics of HfO x-based resistive random access memory. IEEE Electron Device Lett. 36 (2015), pp. 567.
  • C.E. Graves, N. Dávila, E.J. Merced-Grafals, S.-T. Lam, J. Paul Strachan, and R.S. Williams, Temperature and field-dependent transport measurements in continuously tunable tantalum oxide memristors expose the dominant state variable. Appl. Phys. Lett. 110 (2017), pp. 123501.
  • L. Vandelli, A. Padovani, L. Larcher, and G. Bersuker, Microscopic modeling of electrical stress-induced breakdown in poly-crystalline hafnium oxide dielectrics. IEEE Trans. Electron Devices 60(5) (2013), pp. 1754.
  • X. Guan, S. Yu, and H. Wong, On the switching parameter variation of metal-Oxide RRAM – Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4) (2012), pp. 1172.
  • S. Yu, X. Guan, and H.-S. P. Wong, Understanding metal oxide RRAM current overshoot and reliability using Kinetic Monte Carlo simulation, 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012. doi:10.1109/IEDM.2012.6479105
  • B. Butcher, G. Bersuker, D. Gilmer, L. Larcher, A. Padovani, L. Vandelli, R. Geer, and P. Kirsch, Connecting the physical and electrical properties of Hafnia-based RRAM, 2013 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013. doi:10.1109/IEDM.2013.6724682
  • C.M.M. Rosário, B. Thöner, A. Schönhals, S. Menzel, A. Meledin, N.P. Barradas, E. Alves, J. Mayer, M. Wuttig, R. Waser, N.A. Sobolev, and D.J. Wouters, Metallic filamentary conduction in valence change-based resistive switching devices: The case of TaOx thin film with x similar to 1, Nanoscale 11 (2019), pp. 16978–16990.
  • C.M.M. Rosario, B. Thoener, A. Schoenhals, S. Menzel, M. Wuttig, R. Waser, N.A. Sobolev, and D.J. Wouters, Correlation between the transport mechanisms in conductive filaments inside Ta2O5-based resistive switching devices and in substoichiometric TaOx thin films. Appl. Phys. Lett. 112 (2018), pp. 213504.
  • C.W. Hsu, Y.F. Wang, C.C. Wan, I.T. Wang, C.T. Chou, W.L. Lai, Y.J. Lee, and T.H. Hou, Homogeneous barrier modulation of TaOx/TiO2 bilayers for ultra-high endurance three-dimensional storage-class memory, Nanotechnology 25(16) (2014), pp. 165202/1.
  • J.R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K. Tsunoda, G.I. Meijer, and Y. Nishi, Field-programmable rectification in rutile TiO2 crystals. Appl. Phys. Lett. 91(11) (2007), pp. 112101/1.
  • S. Lee, J.S. Lee, J.-B. Park, Y.K. Kyoung, M.-J. Lee, and T.W. Noh, Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistive switching Pt/Nb:SrTiO3 cells short, APL Mater. 2 (2014), pp. 066103.
  • T. You, Y. Shuai, W. Luo, N. Du, D. Bürger, I. Skorupa, R. Hübner, S. Henker, C. Mayr, R. Schüffny, T. Mikolajick, O.G. Schmidt, and H. Schmidt, Exploiting memristive BiFeO3 bilayer structures for compact sequential logics. Adv. Funct. Mater. 24 (2014), pp. 3357.
  • E. Miranda, D. Jiménez, A. Tsurumaki-Fukuchi, J. Blasco, H. Yamada, J. Suñé, and A. Sawa, Modeling of hysteretic Schottky diode-like conduction in Pt/BiFeO3/SrRuO3 switches. Appl. Phys. Lett. 105(8) (2014), pp. 082904.
  • T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, Electrical properties and colossal electroresistance of heteroepitaxial SrRuO3SrTi1−xNbxO3(0.0002x0.02)Schottky junctions. Phys. Rev. B 75(16) (2007), pp. 165101.
  • J.H. Hur, K.M. Kim, M. Chang, S.R. Lee, D. Lee, C.B. Lee, M.J. Lee, Y.B. Kim, C.J. Kim, and U.I. Chung, Modeling for multilevel switching in oxide-based bipolar resistive memory, Nanotechnology 23(22) (2012), pp. 225702/1.
  • S. Yu, X. Guan, and H.P. Wong, Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett. 99(6) (2011), pp. 063507.
  • C. Funck, A. Marchewka, C. Baeumer, P.C. Schmidt, P. Mueller, R. Dittmann, M. Martin, R. Waser, and S. Menzel, A theoretical and experimental view on the temperature dependence of the electronic conduction through a Schottky barrier in a resistively switching SrTiO3-based memory cell. Adv. Electron. Mater. 4(7) (2018), pp. 1800062.
  • C. Funck, C. Bäumer, S. Wiefels, T. Hennen, R. Waser, S. Hoffmann-Eifert, R. Dittmann, and S. Menzel, Comprehensive model for the electronic transport in Pt/SrTiO3 analog memristive devices. Phys. Rev. B Condens. Matter. 102 (2020), pp. 035307.
  • C. Baeumer, C. Funck, A. Locatelli, T.O. Mente, F. Genuzio, T. Heisig, F. Hensling, N. Raab, C.M. Schneider, S. Menzel, R. Waser, and R. Dittmann, In-gap states and band-like transport in memristive devices. Nano Lett. 19(1) (2019), pp. 54.
  • C. Funck. Theoretical and experimental investigation of electronic transport phenomena in oxide based resistive switches, PhD Thesis, RWTH Aachen University, 2021. doi:10.18154/RWTH-2021-10231
  • (2013). Available at http://news.panasonic.com/global/press/data/2013/07/en130730-2/en130730-2.html.
  • I. Muñoz-Martin, S. Bianchi, E. Covi, G. Piccolboni, A. Bricalli, A. Regev, J. F. Nodin, E. Nowak, G. Molas, and D. Ielmini, A SiOx RRAM-based hardware with spike frequency adaptation for power-saving continual learning in convolutional neural networks, 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020. doi:10.1109/VLSITechnology18217.2020.9265072
  • C. Chou, Z. Lin, P. Tseng, C. Li, C. Chang, W. Chen, Y. Chih, and T. J. Chang, An N40 256Kx44 embedded RRAM macro with SL-precharge SA and low-voltage current limiter to improve read and write performance, 2018 IEEE International Solid - State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2018. doi:10.1109/ISSCC.2018.8310392
  • Y. Chiu, H. Hu, L. Lai, T. Huang, H. Kao, K. Chang, M. Ho, C. Chou, Y. Chih, T. Chang, and M. Chang, A 40nm 2Mb ReRAM macro with 85% reduction in forming time and 99% reduction in page-write time using auto-forming and auto-write schemes, 2019 IEEE Symposium on VLSI Technology, Kyoto, Japan, 2019. doi:10.23919/VLSIT.2019.8776540
  • C. Yang, C. Wu, M. Yang, W. Wang, M. Yang, T. Chien, V. Fan, S. Tsai, Y. Lee, W. Chu, and A. Hung, Industrially applicable read disturb model and performance on mega-bit 28nm embedded RRAM, 2020 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2020. doi:10.1109/VLSITechnology18217.2020.9265060
  • C. Chou, Z. Lin, C. Lai, C. Su, P. Tseng, W. Chen, W. Tsai, W. Chu, T. Ong, H. Chuang, Y. Chih, and T.J. Chang, A 22nm 96KX144 RRAM macro with a self-tracking reference and a low ripple charge pump to achieve a configurable read window and a wide operating voltage range, 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 2020. doi:10.1109/VLSICircuits18222.2020.9163014
  • A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. El Hajjam, R. Crochemore, J. Nodin, P. Olivo, and L. Perniola, Fundamental variability limits of filament-based RRAM, 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016. doi:10.1109/IEDM.2016.7838348
  • J. Sandrini, L. Grenouillet, V. Meli, N. Castellani, I. Hammad, S. Bernasconi, F. Aussenac, S. Van Duijn, G. Audoit, M. Barlas, J.F. Nodin, O. Billoint, G. Molas, R. Fournel, E. Nowak, F. Gaillard, and C. Cagli, OxRAM for embedded solutions on advanced node: scaling perspectives considering statistical reliability and design constraints, 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019. doi:10.1109/IEDM19573.2019.8993484
  • W. Kim, S. Menzel, D.J. Wouters, Y. Guo, J. Robertson, B. Rösgen, R. Waser, and V. Rana, Impact of oxygen exchange reaction at the Ohmic interface in Ta2O5-based ReRAM devices. Nanoscale 8(41) (2016), pp. 17774.
  • W. Kim, S. Menzel, D.J. Wouters, R. Waser, and V. Rana, 3-bit multi level switching by deep reset phenomenon in Pt/W/TaOx/Pt-ReRAM devices, IEEE Electron Device Lett. 37(5) (2016), pp. 564.
  • S. Larentis, F. Nardi, S. Balatti, D.C. Gilmer, and D. Ielmini, Resistive switching by voltage-driven ion migration in Bipolar RRAM – Part II: Modeling. IEEE Trans. Electron Devices 59(9) (2012), pp. 2468.
  • A. Schoenhals, S. Menzel, V. Rana, and R. Waser, 3-bit read scheme for single layer Ta2O5 ReRAM, 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS), Jeju, Korea (South), 2014. doi:10.1109/NVMTS.2014.7060845
  • S. Kim, S. Choi, and W. Lu, Comprehensive physical model of dynamic resistive switching in an oxide memristor, ACS Nano 8 (2014), pp. 2369.
  • A. Marchewka, B. Roesgen, K. Skaja, H. Du, C.L. Jia, J. Mayer, V. Rana, R. Waser, and S. Menzel, Nanoionic resistive switching memories: On the physical nature of the dynamic reset process, Adv. Electron. Mater. 2(1) (2016), pp. 1500233/1.
  • A. Marchewka, R. Waser, and S. Menzel, 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2016.
  • D.B. Strukov, F. Alibart, and R.S. Williams, Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A Mater. Sci. Process. 107(3) (2012), pp. 509.
  • P.R. Mickel, A.J. Lohn, B.J. Choi, and J.J. Yang, A physical model of switching dynamics in tantalum oxide memristive devices. Appl. Phys. Lett. 102 (2013), pp. 223502.
  • S. Yu, X. Guan, and H. Wong, On the switching parameter variation of metal oxide RRAM – Part II: Model corroboration and device design strategy. IEEE Trans. Electron Devices 59(4) (2012), pp. 1183.
  • Y. Zhao, P. Huang, Z. Chen, C. Liu, H. Li, B. Chen, W. Ma, F. Zhang, B. Gao, X. Liu, and J. Kang, Modeling and optimization of bilayered TaOx RRAM based on defect evolution and phase transition effects. IEEE Trans. Electron Devices 63 (2016), pp. 1524.
  • S. Clima, B. Govoreanu, M. Jurczak, and G. Pourtois, HfOx as RRAM material – first principles insights on the working principles. Microelectron Eng. 120 (2014), pp. 13.
  • A. OHara, G. Bersuker, and A.A. Demkov, Assessing hafnium on hafnia as an oxygen getter. J. Appl. Phys. 115(18) (2014), pp. 183703.
  • M. Schie, S. Menzel, J. Robertson, R. Waser, and R.A. De Souza, Field-enhanced route to generating anti-Frenkel pairs in HfO2. Phys. Rev. Mater. 2(3) (2018), pp. 035002.
  • E. Abbaspour, S. Menzel, and C. Jungemann, The role of the interface reactions in the electroforming of redox-based resistive switching devices using KMC simulations, 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 2015. doi:10.1109/SISPAD.2015.7292317
  • E. Abbaspour, S. Menzel, and C. Jungemann, A 2D Axisymmetric dynamic drift-diffusion model for numerical simulation of resistive switching phenomena in metal oxides, 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Nuremberg, Germany, 2016. doi:10.1109/SISPAD.2016.7605167
  • E. Abbaspour, S. Menzel, and C. Jungemann, Studying the switching variability in redox-based resistive switching devices. J. Comput. Electron. 19 (2020), pp. 1426.
  • N. Raghavan, R. Degraeve, A. Fantini, L. Goux, D.J. Wouters, G. Groeseneken, and M. Jurczak, Modeling the impact of reset depth on vacancy-induced filament perturbations in HfO2 RRAM. IEEE Electron Device Lett. 34(5) (2013), pp. 614.
  • J.H. Hur, M.-J. Lee, C.B. Lee, Y.-B. Kim, and C.-J. Kim, Modeling for bipolar resistive memory switching in transition-metal oxides. Phys. Rev. B 82 (2010), pp. 155321.
  • C. Hermes, R. Bruchhaus, and R. Waser, Forming-free TiO2-based resistive switching devices on CMOS-compatible W-plugs. IEEE Electron Device Lett. 32(11) (2011), pp. 1588.
  • M. Noman, W. Jiang, P.A. Salvador, M. Skowronski, and J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A Mater. Sci. Process 102(4) (2011), pp. 877.
  • S.A. Mojarad, J.P. Goss, K.S.K. Kwa, P.K. Petrov, B. Zou, N. Alford, and A. O'Neill, Anomalous resistive switching phenomenon. J. Appl. Phys. 112(12) (2012), pp. 124516/1.
  • C. La Torre, A.F. Zurhelle, T. Breuer, R. Waser, and S. Menzel, Compact modeling of complementary switching in oxide-based ReRAM devices. IEEE Trans. Electron Devices 66(3) (2019), pp. 1268.
  • B. Arndt, F. Borgatti, F. Offi, M. Phillips, P. Parreira, T. Meiners, S. Menzel, K. Skaja, G. Panaccione, D.A. MacLaren, R. Waser, and R. Dittmann, Spectroscopic indications of tunnel barrier charging as the switching mechanism in memristive devices. Adv. Funct. Mater. 27 (2017), pp. 1702282.
  • B. Govoreanu, D. Crotti, S. Subhechha, L. Zhang, Y.Y Chen, S. Clima, V. Paraschiv, H. Hody, C. Adelmann, M. Popovici, O. Richard, and M. Jurczak, a-VMCO: A novel forming-free, self-rectifying, analog memory cell, 2015 IEEE Symposium on VLSI Technology, Kyoto, Japan, 2015. doi:10.1109/VLSIT.2015.7223717
  • H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. Lee, W. Kim, Y. Park, I. Yoo, and H. Hwang, Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application, 2005 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2005. doi:10.1109/IEDM.2005.1609464
  • M. Hasan, R. Dong, H.J. Choe, D.S. Lee, D.J. Seong, M.B. Pyun, and H. Hwang, Uniform resistive switching with a thin reactive metal interface layer in metal-La0.7Ca0.3MnO3-metal heterostructures. Appl. Phys. Lett. 92 (2008), pp. 202102.
  • M. Hansen, M. Ziegler, L. Kolberg, R. Soni, S. Dirkmann, T. Mussenbrock, and H. Kohlstedt, A double barrier memristive device. Sci. Rep. 5 (2015), pp. 13753.
  • S. Park, H. Kim, M. Choo, J. Noh, A. Sheri, S. Jung, K. Seo, J. Park, S. Kim, W. Lee, J. Shin, D. Lee, G. Choi, J. Woo, E. Cha, J. Jang, C. Park, M. Jeon, B. Lee, B.H. Lee, and H. Hwang, RRAM-based synapse for neuromorphic system with pattern recognition function, 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012. doi:10.1109/IEDM.2012.6479016
  • K. Moon, S. Park, J. Jang, D. Lee, J. Woo, E. Cha, S. Lee, J. Park, J. Song, Y. Koo, and H. Hwang, Hardware implementation of associative memory characteristics with analogue-type resistive-switching device. Nanotechnology 25(49) (2014), pp. 495204/1.
  • A. Calderoni, S. Sills, C. Cadon, E. Faraoni, and N. Ramaswamy, Engineering ReRAM for high-density applications. Microelectron. Eng. 147 (2015), pp. 145.
  • S. Subhechha, R. Degraeve, P. Roussel, L. Goux, S. Clima, K. De Meyer, J. Van Houdt, and G.S. Kar. Kinetic defect distribution approach for modeling the transient, endurance and retention of a-VMCO RRAM, 2017 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2017. doi:10.1109/IRPS.2017.7936322
  • A. Fantini, L. Goux, R. Degraeve, D. J. Wouters, N. Raghavan, G. Kar, A. Belmonte, Y. Chen, B. Govoreanu, and M. Jurczak, Intrinsic switching variability in HfO2 RRAM, 2013 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 2013. doi:10.1109/IMW.2013.6582090
  • A. Baikalov, Y.Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y.Y. Sun, Y.Y. Xue, and C.W. Chu, Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 83(5) (2003), pp. 957.
  • X. Chen, N.J. Wu, J. Strozier, and A. Ignatiev, Direct resistance profile for an electrical pulse induced resistance change device. Appl. Phys. Lett. 87(23) (2005), pp. 233506.
  • D.J. Seong, M. Jo, D. Lee, and H. Hwang, HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO[sub 3] Schottky Junction for nonvolatile memory application. Electrochem. Solid State Lett. 10(6) (2007), pp. H168.
  • Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, and A. Ignatiev, Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides, Phys. Rev. Lett. 98(14) (2007), pp. 146403/1.
  • S.H. Jeon, B.H. Park, J. Lee, B. Lee, and S. Han, First-principles modeling of resistance switching in perovskite oxide material. Appl. Phys. Lett. 89(4) (2006), pp. 42904.
  • A. Ignatiev, N.J. wu, X. Chen, Y.B. Nian, C. Papagianni, S.Q. Liu, and J. Strozier, Resistance switching in oxide thin films. Phase Trans 81(7–8) (2008), pp. 791.
  • S. Asanuma, H. Akoh, H. Yamada, and A. Sawa, Relationship between resistive switching characteristics and band diagrams of Ti/Pr1− xCaxMnO3 junctions. Phys. Rev. B 80(23) (2009), pp. 235113/1.
  • A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18) (2004), pp. 4073.
  • T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Hysteretic current–voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86(1) (2005), pp. 12107.
  • R. Fors, S.I. Khartsev, and A.M. Grishin, Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition. Phys. Rev. B Condens. Matter Mater. Phys. 71(4) (2005), pp. 45305.
  • M.J. Rozenberg, I.H. Inoue, and M.J. Sanchez, Nonvolatile memory with multilevel switching: A basic model. Phys. Rev. Lett. 92(17) (2004), pp. 178302/1.
  • T. Oka and N. Nagaosa, Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance, Phys. Rev. Lett. 95(26) (2005), pp. 266403/1.
  • K.H. Xue, C.A.P. de Araujo, J. Celinska, and C. McWilliams, A non-filamentary model for unipolar switching transition metal oxide resistance random access memories, J. Appl. Phys. 109 (2011), Article no. 091602. doi:10.1063/1.3581193
  • H.S. Lee, S.G. Choi, H.H. Park, and M.J. Rozenberg, new route to the Mott-Hubbard metal-insulator transition: Strong correlations effects in Pr0.7Ca0.3MnO3, Sci. Rep. 3 (2013), pp. 1704/1.
  • J.S. Langer, Instabilities and pattern formation in crystal growth. Rev. Modern Phys. 52 (1980), pp. 1.
  • R. Muenstermann, T. Menke, R. Dittmann, S. Mi, C.-L. Jia, D. Park, and J. Mayer, Correlation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films. J. Appl. Phys. 108(12) (2010), pp. 124504/1.
  • S. Kumar, C.E. Graves, J.P. Strachan, A.L.D. Kilcoyne, T. Tyliszczak, Y. Nishi, and R.S. Williams, In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors. J. Appl. Phys. 118(3) (2015), pp. 034502.
  • D. Rubi, F. Tesler, I. Alposta, A. Kalstein, N. Ghenzi, F. Gomez-Marlasca, M. Rozenberg, and P. Levy, Two resistive switching regimes in thin film manganite memory devices on silicon. Appl. Phys. Lett. 103(16) (2013), pp. 163506/1.
  • C. Baeumer, T. Heisig, B. Arndt, K. Skaja, F. Borgatti, F. Offi, F. Motti, G. Panaccione, R. Waser, S. Menzel, and R. Dittmann, Spectroscopic elucidation of ionic motion processes in tunnel oxide-based memristive devices. Faraday Discuss. 213 (2019), pp. 215.
  • V. Saraswat, S. Prasad, A. Khanna, A. Wagh, A. Bhat, N. Panwar, S. Lashkare, and U. Ganguly, Reaction-drift model for switching transients in Pr0.7Ca0.3MnO3-based resistive RAM. IEEE Electron Device Lett. 67(9) (2020), pp. 3610.
  • A. Herpers, C. Lenser, C. Park, F. Offi, F. Borgatti, G. Panaccione, S. Menzel, R. Waser, and R. Dittmann, Spectroscopic proof of the correlation between redox-state and charge-carrier transport at the interface of resistively switching Ti/PCMO devices. Adv. Mater. 26 (2014), pp. 2730.
  • R. Ortega-Hernandez, M. Coll, J. Gonzalez-Rosillo, A. Palau, X. Obradors, E. Miranda, T. Puig, and J. Sune, Resistive switching in CeO2/La0.8Sr0.2MnO3 bilayer for non-volatile memory applications. Microelectron. Eng. 147 (2015), pp. 37.
  • M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70(4) (1998), pp. 1039.
  • J.M.D. Coey, M. Viret, and S. von Molnar, Mixed-valence manganites. Adv. Phys. 48(2) (1999), pp. 167.
  • A. Herpers, Electrical characterization of manganite and titanate heterostructures, Ph.D. thesis, RWTH Aachen, Germany, 2014. Available at http://publications.rwth-aachen.de/record/229001
  • J. Coey, M. Viret, and S. von Molnár, Mixed-valence manganites. Adv. Phys. 58 (2009), pp. 571.
  • L. Malavasi, Role of defect chemistry in the properties of perovskite manganites. J. Mater. Chem. 18(28) (2008), pp. 3295.
  • Y. Tokura and Y. Tomioka, Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200 (1999), pp. 1.
  • S. Raabe, D. Mierwaldt, J. Ciston, M. Uijttewaal, H. Stein, J. Hoffmann, Y. Zhu, P. Bloechl, and C. Jooss, In situ electrochemical electron microscopy study of oxygen evolution activity of doped manganite perovskites. Adv. Funct. Mater. 22(16) (2012), pp. 3378.
  • P. Grossmann, I. Rajkovic, R. More, J. Norpoth, S. Techert, C. Jooss, and K. Mann, Time-resolved near-edge X-ray absorption fine structure spectroscopy on photo-induced phase transitions using a tabletop soft-X-ray spectrometer. Rev. Sci. Instrum. 83(5) (2012), pp. 53110/1.
  • G.F. Dionne (ed.), Magnetic Oxides, Springer, New York, 2009.
  • M. Scherff, J. Hoffmann, B. Meyer, T. Danz, and C. Jooss, Interplay of cross-plane polaronic transport and resistive switching in Pt–Pr0.67Ca0.33MnO3–Pt heterostructures. New J. Phys. 15 (2013), pp. 103008/1.
  • C. Pithan, Y. Iida, J. Dornseiffer, A. Tsubouchi, and R. Waser, Oxygen nonstoichiometry and electrical transport properties of Pr1-xCaxMnO3 ceramics, submitted for publication.
  • Z. Luo, H.K. Lau, P.K.L. Chan, and C.W. Leung, Resistive switching in perovskite-oxide capacitor-type devices, IEEE Trans. Magnet. 50(7) (2014), pp. 3000904/1.
  • D.J. Seong, M. Hassan, H. Choi, J. Lee, J. Yoon, J.B. Park, W. Lee, M.S. Oh, and H. Hwang, Resistive-switching characteristics of AlPr0.7Ca0.3MnO3 for nonvolatile memory applications. IEEE Electron Device Lett. 30(9) (2009), pp. 919.
  • D. Seong, J. Park, N. Lee, M. Hasan, S. Jung, H. Choi, J. Lee, M. Jo, W. Lee, S. Park, S. Kim, Y. Jang, Y. Lee, M. Sung, D. Kil, Y. Hwang, S. Chung, S. Hong, J. Roh, and H. Hwang, Effect of oxygen migration and interface engineering on resistance switching behavior of reactive metal/polycrystalline Pr0.7Ca0.3MnO3 device for nonvolatile memory applications, 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009. doi:10.1109/IEDM.2009.5424410
  • X. Liu, I. Kim, M. Siddik, S.M. Sadaf, K.P. Biju, S. Park, and H. Hwang, Resistive switching mechanism of a Pr0.7Ca0.3MnO3-based memory device and assessment of its suitability for nano-scale applications. J. Kor. Phys. Soc. 59(2) (2011), pp. 497.
  • M. Siddik, K.P. Biju, X. Liu, J. Lee, I. Kim, S. Kim, W. Lee, S. Jung, D. Lee, S. Sadaf, and H. Hwang, Characterization of resistive switching states in W/Pr0.7Ca0.3MnO3 for a submicron (phi 250 nm) via-Hole structure. Jpn. J. Appl. Phys. 50(10) (2011), pp. 105802/1.
  • K. Moon, E. Cha, J. Park, S. Gi, M. Chu, K. Baek, B. Lee, S. Oh, and H. Hwang, High density neuromorphic system with Mo/Pr0.7Ca0.3MnO3 synapse and NbO2 IMT oscillator neuron, 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015. doi:10.1109/IEDM.2015.7409721
  • T. Yamamoto, R. Yasuhara, I. Ohkubo, H. Kumigashira, and M. Oshima, Formation of transition layers at metal/perovskite oxide interfaces showing resistive switching behaviors. J. Appl. Phys. 110(5) (2011), pp. 53707/1.
  • K. Baek, S. Park, J. Park, Y.-M. Kim, H. Hwang, and S.H. Oh, In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9(2) (2017), pp. 582.
  • K. Moon, A. Fumarola, S. Sidler, J. Jang, P. Narayanan, R.M. Shelby, G.W. Burr, and H. Hwang, Bidirectional non-filamentary RRAM as an analog neuromorphic synapse, Part I: Al/Mo/Pr0.7 Ca0.3 MnO3 material improvements and device measurements. IEEE J. Electron Devices Soc. 6(1) (2018), pp. 146.
  • K. Moon, S. Park, D. Lee, J. Woo, E. Cha, S. Lee, and H. Hwang, Silicon Nanoelectronics Workshop, 2014.
  • A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Highly rectifying Pr0.7Ca0.3MnO3/SrTi0.9998Nb0.0002O3 p-n junction. Appl. Phys. Lett. 86(11) (2005), pp. 112508.
  • F. Borgatti, C. Park, A. Herpers, F. Offi, R. Egoavil, Y. Yamashita, A. Yang, M. Kobata, K. Kobayashi, J. Verbeeck, G. Panaccione, and R. Dittmann, Chemical insight into electroforming of resistive switching manganite heterostructures, Nanoscale 5 (2013), pp. 3954–3960.
  • R. Meyer, L. Schloss, J. Brewer, R. Lambertson, W. Kinney, J. Sanchez, and D. Rinerson, Oxide dual-layer memory element for scalable non-volatile cross-point memory technology, 2008 9th Annual Non-Volatile Memory Technology Symposium, Proceedings, Pacific Grove, CA, USA, 2008. doi:10.1109/NVMT.2008.4731194
  • C.J. Chevallier, C.H. Siau, S.F. Lim, S.R. Namala, M. Matsuoka, B.L. Bateman, and D. Rinerson, A 0.13μm 64Mb multi-layered conductive metal-oxide memory, 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010. doi:10.1109/ISSCC.2010.5433945
  • X. Liu, K.P. Biju, S. Park, I. Kim, M. Siddik, S. Sadaf, and H. Hwang, Improved resistive switching properties in Pt/Pr0.7Ca0.3MnO3/Y2O3-stabilized ZrO2/W via-hole structures. Curr. Appl. Phys. 11(2) (2011), pp. E58.
  • S. Park, S. Jung, M. Siddik, M. Jo, J. Lee, J. Park, W. Lee, S. Kim, S. Md. Sadaf, X. Liu, and H. Hwang, Memristive switching behavior in Pr0.7Ca0.3MnO3 by incorporating an oxygen-deficient layer, Phys. Status Solidi Rapid Res. Lett. 5(10–11) (2011), p. 409.
  • X. Chen, J. Strozier, N.J. Wu, A. Ignatiev, and Y.B. Nian, A study of the symmetry properties and multi-state nature of perovskite oxide-based electrical pulse induced resistance-change devices, New J. Phys. 8 (2006), pp. 229/1.
  • A. Ignatiev, N.J. Wu, X. Chen, S.Q. Liu, C. Papagianni, and J. Strozier, Resistance switching in perovskite thin films. Phys. Stat. Sol. 243(9) (2006), pp. 2089.
  • Z.W. Xing, N.J. Wu, and A. Ignatiev, Resistance switching in Fe-doped P0.7Ca0.3MnO3 thin films. Phys. Lett. A 373(3) (2009), pp. 376.
  • J. Norpoth, S. Mildner, M. Scherff, J. Hoffmann, and C. Jooss, In situ TEM analysis of resistive switching in manganite based thin-film heterostructures. Nanoscale 6(16) (2014), pp. 9852.
  • M. Scherff, B. Meyer, J. Hoffmann, C. Jooss, M. Feuchter, and M. Kamlah, Pulse length and amplitude dependent resistive switching mechanisms in Pt-Pr0.67Ca0.33MnO3-Pt sandwich structures. New J. Phys. 17 (2015), pp. 033011.
  • H.S. Lee and H.H. Park, The observation of valence band change on resistive switching of epitaxial Pr0.7Ca0.3MnO3 film using removable liquid electrode, Appl. Phys. Lett. 107(23) (2015), pp. 231603/1.
  • H.S. Lee, H.H. Park, and M.J. Rozenberg, Manganite-based memristive heterojunction with tunable non-linear I–V characteristics. Nanoscale 7(15) (2015), pp. 6444.
  • Y. Tokunaga, Y. Kaneko, J.P. He, T. Arima, A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Colossal electroresistance effect at metal electrode/La1−xSr1+xMnO4 interfaces. Appl. Phys. Lett. 88(22) (2006), pp. 223507.
  • A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Interface resistance switching at a few nanometer thick perovskite manganite active layers. Appl. Phys. Lett. 88(23) (2006), pp. 232112.
  • M. Wilhelm, M. Giesen, T. Duchon, M. Moors, D.N. Mueller, J. Hackl, C. Baeumer, M.H. Hamed, L. Cao, H. Zhang, O. Petracic, M. Gloess, S. Cramm, S. Nemsak, C. Wiemann, R. Dittmann, C.M. Schneider, and M. Mueller, Photoemission electron microscopy of magneto-ionic effects in La0.7Sr0.3MnO3. APL Mater. 8(11) (2020), pp. 111102/1.
  • J. Carlos Gonzalez-Rosillo, R. Ortega-Hernandez, B. Arndt, M. Coll, R. Dittmann, X. Obradors, A. Palau, J. Sune, and T. Puig, Engineering oxygen migration for homogeneous volume resistive switching in 3-terminal devices, Adv. Electron. Mater. 5(9) (2019), pp. 1800629/1.
  • Y. Cui, H. Peng, S. Wu, R. Wang, and T. Wu, Complementary charge trapping and ionic migration in resistive switching of rare-earth manganite TbMnO3. ACS Appl. Mater. Interfaces 5(4) (2013), pp. 1213.
  • X. Chen, N.J. Wu, J. Strozier, and A. Ignatiev, A microscopic analysis on the electrical pulse induced resistance change effect, Integr. Ferroelectr. 90(1) (2007), pp. 65.
  • N.-W. Xin-Chen, J. Strozier, and A. Ignatiev, Spatially extended nature of resistive switching in perovskite oxide thin films. Appl. Phys. Lett. 89(6) (2006), pp. 63507.
  • J.O. Krisponeit, C. Kalkert, B. Damaschke, V. Moshnyaga, and K. Samwer, Time-resolved resistive switching on manganite surfaces: Creep and 1/f α noise signatures indicate pinning of nanoscale domains. Phys. Rev. B: Condens. Matter 87(12) (2013), pp. 121103/1.
  • C. Kalkert, J.O. Krisponeit, M. Esseling, O.I. Lebedev, V. Moshnyaga, B. Damaschke, G. van Tendeloo, and K. Samwer, Resistive switching at manganite/manganite interfaces. Appl. Phys. Lett. 99(13) (2011), pp. 132512/1.
  • H.S. Lee, K.M. Kang, W. Han, T.W. Lee, C.S. Park, Y.J. Choi, and H.H. Park, A study on the resistive switching of La0. 7Sr0.3MnO3 film using spectromicroscopy. Adv. Mater. Develop. Appl. Mech. 597 (2014), pp. 184.
  • S. Park, S. Klett, T. Ivanov, A. Knauer, J. Doell, and M. Ziegler, Engineering method for tailoring electrical characteristics in TiN/TiOx/HfOx/Au Bi-layer oxide memristive devices. Front. Nanotechnol. 3 (2021), pp. 29.
  • S. Dirkmann, M. Hansen, M. Ziegler, H. Kohlstedt, and T. Mussenbrock, The role of ion transport in memristive double barrier devices, Sci. Rep. 6 (2016), pp. 1.
  • B. Govoreanu, A. Redolfi, L. Zhang, C. Adelmann, M. Popovici, S. Clima, H. Hody, V. Paraschiv, I.P. Radu, A. Franquet, J.-C. Liu, J. Swerts, O. Richard, H. Bender, L. Altimime, and M. Jurczak, Vacancy-modulated conductive oxide resistive RAM (VMCO-RRAM): An area-scalable switching current, self-compliant, highly nonlinear and wide on/off-window resistive switching cell, 2013 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013.
  • C. Ge, K.-J. Jin, C. Wang, H.-B. Lu, C. Wang, and G.-Z. Yang, Numerical investigation into the switchable diode effect in metal-ferroelectric-metal structures. Appl. Phys. Lett. 99 (2011), pp. 063509.
  • Y. Shuai, S. Zhou, D. Bürger, M. Helm, and H. Schmidt, Nonvolatile bipolar resistive switching in Au/BiFeO3/Pt. J. Appl. Phys. 109 (2011), pp. 124117.
  • Y. Shuai, X. Ou, C. Wu, W. Zhang, S. Zhou, D. Bürger, H. Reuther, S. Slesazeck, T. Mikolajick, M. Helm, and H. Schmidt, Substrate effect on the resistive switching in BiFeO3 thin films. J. Appl. Phys. 111(7) (2012), pp. 07D906.
  • Y. Shuai, X. Ou, W. Luo, A. Muecklich, D. Bürger, S. Zhou, C. Wu, Y. Chen, W. Zhang, M. Helm, T. Mikolajick, O.G. Schmidt, and H. Schmidt, Key concepts behind forming-free resistive switching incorporated with rectifying transport properties. Sci. Rep. 3 (2013), pp. 2208.
  • T. You, N. Du, S. Slesazeck, T. Mikolajick, G. Li, D. Bürger, I. Skorupa, H. Stöcker, B. Abendroth, A. Beyer, K. Volz, O.G. Schmidt, and H. Schmidt, Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors. ACS Appl. Mater. Interfaces 6(22) (2014), pp. 19758.
  • L. Jin, Y. Shuai, X. Ou, P.F. Siles, H.Z. Zeng, T. You, N. Du, D. Buerger, I. Skorupa, S. Zhou, W.B. Luo, C.G. Wu, W.L. Zhang, T. Mikolajick, O.G. Schmidt, and H. Schmidt, Resistive switching in unstructured, polycrystalline BiFeO3 thin films with downscaled electrodes. Phys. Status Solid A 211 (2014), pp. 2563.
  • T. You, X. Ou, G. Niu, F. Bärwolf, G. Li, N. Du, D. Bürger, I. Skorupa, Q. Jia, W. Yu, X. Wang, O.G. Schmidt, and H. Schmidt, Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes. Sci. Rep. 5 (2015), pp. 18623.
  • N. Du, N. Manjunath, Y. Li, S. Menzel, E. Linn, R. Waser, T. You, D. Bürger, I. Skorupa, D. Walczyk, C. Walczyk, O.G. Schmidt, and H. Schmidt, Field-driven hopping transport of oxygen vacancies in memristive oxide switches with interface-mediated resistive switching. Phys. Rev. Appl. 10(5) (2018), pp. 054025.
  • M. Hasan, R. Dong, H.J. Choi, D.S. Lee, D. Seong, M.B. Pyun, and H. Hwang, Effect of ruthenium oxide electrode on the resistive switching of Nb-doped strontium titanate. Appl. Phys. Lett. 93(5) (2008), pp. 52908/1.
  • C. Park, Y. Seo, J. Jung, and D. Kim, Electrode-dependent electrical properties of metal/Nb-doped SrTiO3 junctions. J. Appl. Phys. 103(5) (2008), pp. 54106/1.
  • R. Muenstermann, R. Dittmann, K. Szot, S. Mi, C.-L. Jia, P. Meuffels, and R. Waser, Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3. Appl. Phys. Lett. 93(2) (2008), pp. 23110/1.
  • D.J. Seong, D. Lee, M. Pyun, J. Yoon, and H. Hwang, Understanding of the switching mechanism of a Pt/Ni-doped SrTiO3 junction via current–voltage and capacitance–voltage measurements. Jpn. J. Appl. Phys. 47(12) (2008), pp. 8749.
  • J. Lee, E.M. Bourim, D. Shin, J.S. Lee, D.j. Seong, J. Park, W. Lee, M. Chang, S. Jung, J. Shin, and H. Hwang, Analysis of interface switching for Nb doped SrTiO3 single crystal device using complex impedance spectroscopy. Curr. Appl. Phys. 10(1) (2010), pp. E68.
  • M. Gwon, E. Lee, A. Sohn, E.M. Bourim, and D.W. Kim, Doping-level dependences of switching speeds and the retention characteristics of resistive switching Pt/SrTiO3 junctions. J. Kor. Phys. Soc 57(6) (2010), pp. 1432.
  • P. Gao, Z. Wang, W. Fu, Z. Liao, K. Liu, W. Wang, X. Bai, and E. Wang, In situ TEM studies of oxygen vacancy migration for electrically induced resistance change effect in cerium oxides. Micron 41(4) (2010), pp. 301.
  • J. Li, N. Ohashi, H. Okushi, and H. Haneda, Temperature dependence of carrier transport and resistance switching in Pt/SrTi1-xNbxO3 Schottky junctions, Phys. Rev. B 83(12) (2011), pp. 125317/1.
  • E. Lee, M. Gwon, D.W. Kim, and H. Kim, Resistance state-dependent barrier inhomogeneity and transport mechanisms in resistive-switching Pt/SrTiO3 junctions, Appl. Phys. Lett. 98(13) (2011), pp. 132905/1.
  • X. Sun, G. Li, L. Chen, Z. Shi, and W. Zhang, Bipolar resistance switching characteristics with opposite polarity of Au/SrTiO3/Ti memory cells, Nanoscale Res. Lett. 6 (2011), pp. 599/1.
  • R. Buzio, A. Gerbi, A. Gadaleta, L. Anghinolfi, F. Bisio, E. Bellingeri, A.S. Siri, and D. Marre, Modulation of resistance switching in Au/Nb:SrTiO3 Schottky junctions by ambient oxygen. Appl. Phys. Lett. 101(24) (2012), pp. 243505.
  • Y.L. Chen, J. Wang, C.M. Xiong, R.F. Dou, J.Y. Yang, and J.C. Nie, Scanning tunneling microscopy/spectroscopy studies of resistive switching in Nb-doped SrTiO3, J. Appl. Phys. 112(2) (2012), pp. 023703/1.
  • E.M. Bourim and D.W. Kim, Conductance spectroscopy of resistive switching Pt/Nb: STO single crystal Schottky junctions in air and vacuum. Curr. Appl. Phys. 13(3) (2013), pp. 505.
  • D. Kan and Y. Shimakawa, Transient behavior in Pt/Nb-doped SrTiO3 Schottky junctions. Appl. Phys. Lett. 103 (2013), pp. 142910.
  • C. Rodenbücher, W. Speier, G. Bihlmayer, U. Breuer, R. Waser, and K. Szot, Cluster-like resistive switching of SrTiO3:Nb surface layers. New J. Phys. 15 (2013), pp. 103017.
  • Y.H. Wang, K.H. Zhao, X.L. Shi, G.L. Xie, S.Y. Huang, and L.W. Zhang, Investigation of the resistance switching in Au/SrTiO3:Nb heterojunctions. Appl. Phys. Lett. 103(3) (2013), pp. 031601.
  • Y.S. Kim, J. Kim, M.J. Yoon, C.H. Sohn, S.B. Lee, D. Lee, B.C. Jeon, H.K. Yoo, T.W. Noh, A. Bostwick, E. Rotenberg, J. Yu, S.D. Bu, and B.S. Mun, Impact of vacancy clusters on characteristic resistance change of nonstoichiometric strontium titanate nano-film, Appl. Phys. Lett. 104(1) (2014), pp. 13501/1.
  • E. Mikheev, B.D. Hoskins, D.B. Strukov, and S. Stemmer, Resistive switching and its suppression in Pt/Nb: SrTiO3 junctions. Nat. Commun. 5 (2014), pp. 3990.
  • J. Park, D.-H. Kwon, H. Park, C.U. Jung, and M. Kim, Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl. Phys. Lett. 105 (2014), pp. 183103.
  • H.X. Lu, Y.B. Liu, Y.S. Chen, J. Wang, B.G. Shen, and J.R. Sun, Reversible modulation of electric transport properties by oxygen absorption and releasing on Nb:SrTiO3 surface. J. Appl. Phys. 116(17) (2014), pp. 173710.
  • M. Yang, L.Z. Ren, Y.J. Wang, F.M. Yu, M. Meng, W.Q. Zhou, S.X. Wu, and S.W. Li, Direct evidences of filamentary resistive switching in Pt/Nb-doped SrTiO3 junctions. J. Appl. Phys. 115(13) (2014), pp. 134505/1.
  • E. Mikheev, J. Hwang, A.P. Kajdos, A.J. Hauser, and S. Stemmer, Tailoring resistive switching in Pt/SrTiO3 junctions by stoichiometry control, Sci. Rep. 5 (2015), pp. 11079.
  • M. Moors, K.K. Adepalli, Q. Lu, A. Wedig, C. Bäumer, K. Skaja, B. Arndt, H.L. Tuller, R. Dittmann, R. Waser, B. Yildiz, and I. Valov, Resistive switching mechanisms on TaOx and SrRuO3 thin-film surfaces probed by scanning tunneling microscopy. ACS Nano 10(1) (2016), pp. 1481.
  • J. Chen, T. Sekiguchi, J. Li, and S. Ito, Investigation of dislocations in Nb-doped (100) SrTiO3 single crystals and their impacts on resistive switching, Superlattices Microstruct. 99 (2016), pp. 182–185.
  • G. Xie, Y. Wang, T. Ren, J.L. Zhu, and J. Sun, Evolution of resistive switching polarity in Au/Ar+ bombarded SrTi0.993Nb0.007O3/In sandwiches. Chin. Sci. Bull. 57(1) (2012), pp. 20.
  • S.U. Sharath, S. Vogel, L. Molina-Luna, E. Hildebrandt, C. Wenger, J. Kurian, M. Duerrschnabel, T. Niermann, G. Niu, P. Calka, M. Lehmann, H.J. Kleebe, T. Schroeder, and L. Alff, Control of switching modes and conductance quantization in oxygen engineered HfOx based memristive devices. Adv. Funct. Mater. 27(32) (2017), pp. 1700432/1.
  • D.S. Shang, J.R. Sun, L. Shi, and B.G. Shen, Photoresponse of the Schottky junction Au/SrTiO3: Nb in different resistive states. Appl. Phys. Lett. 93(10) (2008), pp. 102106/1.
  • C. Rodenbücher, M. Luysberg, A. Schwedt, V. Havel, F. Gunkel, J. Mayer, and R. Waser, Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals, Sci. Rep. 6 (2016), pp. 32250.
  • M.J. Rozenberg, M.J. Sanchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy, Mechanism for bipolar resistive switching in transition-metal oxides. Phys. Rev. B 81(11) (2010), pp. 115101.
  • S. Tang, F. Tesler, F.G. Marlasca, P. Levy, V. Dobrosavljevic, and M. Rozenberg, Shock waves and commutation speed of memristors, Phys. Rev. X  6(1) (2016), pp. 11028/1.
  • D. Cooper, C. Baeumer, N. Bernier, A. Marchewka, C. La Torre, R.E. Dunin-Borkowski, S. Menzel, R. Waser, and R. Dittmann, Anomalous resistance hysteresis in oxide ReRAM: Oxygen evolution and reincorporation revealed by in situ TEM. Adv. Mater. 29(23) (2017), pp. 1700212.
  • J.S. Lee, S.B. Lee, B. Kahng, and T.W. Noh, Two opposite hysteresis curves in semiconductors with mobile dopants, Appl. Phys. Lett. 102(25) (2013), pp. 253503/1.
  • D.S. Jeong, H. Schroeder, and R. Waser, Mechanism for bipolar switching in aPt/TiO2/Pt resistive switching cell. Phys. Rev. B 79(19) (2009), pp. 195317/1.
  • Y. Wang, X. Qian, K. Chen, Z. Fang, W. Li, and J. Xu, Resistive switching mechanism in silicon highly rich SiOx (x< 0.75) films based on silicon dangling bonds percolation model. Appl. Phys. Lett. 102(4) (2013), pp. 042103.
  • C. Jooss, J. Hoffmann, J. Fladerer, M. Ehrhardt, T. Beetz, L. Wu, and Y. Zhu, Electric pulse induced resistance change effect in manganites due to polaron localization at the metal-oxide interfacial region. Phys. Rev. B 77(13) (2008), pp. 132409.
  • C. Moreno, C. Munuera, A. Perez del Pino, J. Gutierrez, T. Puig, C. Ocal, X. Obradors, and A. Ruyter, Absence of self-heated bistable resistivity in La0.7Sr0.3MnO3 films up to high current densities. Phys. Rev. B Condens. Matter. 80(9) (2009), pp. 94412/1.
  • C. Moreno, C. Munuera, S. Valencia, F. Kronast, X. Obradors, and C. Ocal, Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. Nano Lett. 10(10) (2010), pp. 3828.
  • L. Goux, P. Czarnecki, Y.Y. Chen, L. Pantisano, X.P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D.J. Wouters, and L. Altimime, Evidences of oxygen-mediated resistive-switching mechanism in TiN ∖ HfO2 ∖ Pt cells. Appl. Phys. Lett. 97(24) (2010), pp. 243509.
  • T. Heisig, C. Baeumer, U.N. Gries, M.P. Mueller, C. La Torre, M. Luebben, N. Raab, H. Du, S. Menzel, D.N. Mueller, C.-L. Jia, J. Mayer, R. Waser, I. Valov, R.A. De Souza, and R. Dittmann, Oxygen exchange processes between oxide memristive devices and water molecules. Adv. Mater. 30(29) (2018), pp. 1800957.
  • S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, Physics of the switching kinetics in resistive memories. Adv. Funct. Mater. 25(40) (2015), pp. 6306.
  • K. Fleck, C. La Torre, N. Aslam, S. Hoffmann-Eifert, U. Böttger, and S. Menzel, Uniting gradual and abrupt set processes in resistive switching oxides. Phys. Rev. Appl. 6(6) (2016), pp. 064015.
  • J.P. Strachan, A.C. Torrezan, G. Medeiros-Ribeiro, and R.S. Williams, Measuring the switching dynamics and energy efficiency of tantalum oxide memristors. Nanotechnology 22(50) (2011), pp. 505402/1.
  • S. Koveshnikov, K. Matthews, K. Min, D. Gilmer, M. Sung, S. Deora, H. Li, S. Gausepohl, P. Kirsch, and R. Jammy, Real-time study of switching kinetics in integrated 1T/ HfOx 1R RRAM: Intrinsic tunability of set/reset voltage and trade-off with switching time, IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012. doi:10.1109/IEDM.2012.6479080
  • D. Ielmini, F. Nardi, and S. Balatti, Evidence for voltage-driven set/reset processes in bipolar switching RRAM. IEEE Trans. Electron Devices 59 (2012), pp. 2049.
  • T. Diokh, E. Le-Roux, S.J eannot, M. Gros-Jean, P. Candelier, J. F. Nodin, V. Jousseaume, L. Perniola, H. Grampeix, T. Cabout, E. Jalaguier, M. Guillermet, and B. De Salvo, Investigation of the impact of the oxide thickness and RESET conditions on disturb in HfO2-RRAM integrated in a 65nm CMOS technology, 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2013. doi:10.1109/IRPS.2013.6532043
  • S. Yu, Y. Wu, and H. Wong, Investigating the switching dynamics and multilevel capability of bipolar metal oxide resistive switching memory, Appl. Phys. Lett. 98(10) (2011), pp. 103514/1.
  • M.G. Cao, Y.S. Chen, J.R. Sun, D.S. Shang, L.F. Liu, J.F. Kang, and B.G. Shen, Nonlinear dependence of set time on pulse voltage caused by thermal accelerated breakdown in the Ti/HfO2 /Pt resistive switching devices. Appl. Phys. Lett. 101(20) (2012), pp. 203502.
  • F. Alibart, L. Gao, B.D. Hoskins, and D.B. Strukov, High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology 23(7) (2012), pp. 75201/1.
  • Y. Nishi, S. Menzel, K. Fleck, U. Boettger, and R. Waser, Origin of the SET kinetics of the resistive switching in tantalum oxide thin films. IEEE Electron Device Lett. 35(2) (2013), pp. 259.
  • K. Fleck, U. Böttger, R. Waser, and S. Menzel, Interrelation of sweep and pulse analysis of the set process in SrTiO3 resistive switching memories. IEEE Electron Device Lett. 35(9) (2014), pp. 924.
  • H.Y. Lee, Y.S. Chen, P.S. Chen, P.Y. Gu, Y.Y. Hsu, S.M. Wang, W.H. Liu, C.H. Tsai, S.S. Sheu, P.C. Chiang, W.P. Lin, C.H. Lin, W.S. Chen, F.T. Chen, C.H. Lien, and M. Tsai, Evidence and solution of over-reset problem for HfOX based resistive memory with sub-ns switching speed and high endurance, 2010 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2010. doi:10.1109/IEDM.2010.5703395
  • B.J. Choi, A.C. Torrezan, S. Kumar, J.P. Strachan, P.G. Kotula, A.J. Lohn, M.J. Marinella, Z. Li, R.S. Williams, and J.J. Yang, High-speed and low-energy nitride memristors. Adv. Funct. Mater. 26(29) (2016), pp. 5290.
  • U. Böttger, M. von Witzleben, V. Havel, K. Fleck, V. Rana, R. Waser, and S. Menzel, Picosecond multilevel resistive switching in tantalum oxide thin films. Sci. Rep. 10(1) (2020), pp. 16391.
  • M. von Witzleben, S. Walfort, R. Waser, S. Menzel, and U. Böttger, Determining the electrical charging speed limit of ReRAM devices. IEEE J. Electron Devices Soc. 9 (2021), pp. 667.
  • V. Havel, K. Fleck, B. Rösgen, V. Rana, S. Menzel, U. Böttger, and R. Waser, Ultrafast switching in Ta2O5-based resistive memories, Silicon Nanoelectronics Worshop SNW 2016, Honolulu, HI, USA, 2016. doi:10.1109/SNW.2016.7577995
  • S. Menzel, M. von Witzleben, V. Havel, and U. Boettger, The ultimate switching speed limit of redox-based resistive switching devices. Faraday Discuss. 213 (2019), pp. 197.
  • V.V. Zhirnov, R. Meade, R.K. Cavin, and G. Sandhu, Scaling limits of resistive memories. Nanotechnology 22(25) (2011), pp. 254027/1.
  • D. Lencer, M. Salinga, and M. Wuttig, Design rules for phase-change materials in data storage applications. Adv. Mater. 23(18) (2011), pp. 2030.
  • W.J. Merz, Switching time in Ferroelectric BaTiO3 and its dependence on crystal thickness. J. Appl. Phys. 27(8) (1956), pp. 938.
  • S. Menzel, S. Tappertzhofen, R. Waser, and I. Valov, Switching kinetics of electrochemical metallization memory cells. PCCP 15(18) (2013), pp. 6945.
  • M. Sowinska, T. Bertaud, D. Walczyk, S. Thiess, P. Calka, L. Alff, C. Walczyk, and T. Schroeder, In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2 /TiN cells. J. Appl. Phys. 115(20) (2014), pp. 204509.
  • S. Siegel, C. Baeumer, A. Gutsche, M. von Witzleben, R. Waser, S. Menzel, and R. Dittmann, Trade-off between data retention and switching speed in resistive switching ReRAM devices, Adv. Electron. Mater. 7(1) (2020), pp. 2000815/1.
  • D.B. Strukov and R.S. Williams, Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 94(3) (2009), pp. 515.
  • S. Yu and H.-S. Wong, Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 58(5) (2011), pp. 1352.
  • P. Meuffels and H. Schroeder, Comment on ‘Exponential ionic drift: Fast switching and low volatility of thin-film memristors’ by D.B. Strukov and R.S. Williams in Appl. Phys. A (2009) 94: 515–519. Appl. Phys. A Mater. Sci. Process. 105(1) (2011), pp. 65.
  • S. Menzel and J.-H. Hur, Modeling the VCM- and ECM-type switching kinetics, in Resistive Switching - From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Wiley-VCH, Weinheim, 2016, pp. 395–436.
  • D. Ielmini, F. Nardi, and C. Cagli, Universal reset characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Electron Devices 58(10) (2011), pp. 1.
  • S. Menzel, U. Böttger, and R. Waser, Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 111(1) (2012), pp. 014501/1.
  • S. Menzel and R. Waser, Analytical analysis of the generic SET and RESET characteristics of electrochemical metallization memory cells. Nanoscale 5(22) (2013), pp. 11003.
  • D. Ielmini and S. Menzel, Universal switching behavior, in Resistive Switching - From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Wiley-VCH, Weinheim, 2016, pp. 317–340.
  • D. Ielmini, Modeling the universal set/reset characteristics of bipolar RRAM by field- and temperature-driven filament growth. IEEE Trans. Electron. Devices 58(12) (2011), pp. 4309.
  • C. Schindler, Resistive switching in electrochemical metallization memory cells, Ph.D. thesis, RWTH Aachen University, 2009. Available at https://publications.rwth-aachen.de/record/50802
  • F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, and D.J. Wouters, Control of filament size and reduction of reset current below 10µA in NiO resistance switching memories. Solid State Electron. 58(1) (2011), pp. 42.
  • J. Lee, J. Shin, W. Lee, S. Jung, M. Jo, J. Park, K. Biju, S. Kim, S. Park, and H. Hwang, Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications, 2010 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2010. doi:10.1109/IEDM.2010.5703393
  • J. Park, S. Jung, J. Lee, W. Lee, S. Kim, J. Shin, and H. Hwang, Resistive switching characteristics of ultra-thin TiOx. Microelectron. Eng. 88(7) (2011), pp. 1136.
  • D. Ielmini, Filamentary-switching model in RRAM for time, energy and scaling projections, 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2011. doi:10.1109/IEDM.2011.6131571
  • R. Waser, R. Bruchhaus, and S. Menzel, Redox-based resistive switching memories, in Nanoelectronics and Information Technology, 3rd ed., Wiley-VCH, Berlin, 2012, pp. 683–710.
  • D.J. Wouters, L. Zhang, A. Fantini, R. Degraeve, L. Goux, Y.Y. Chen, B. Govoreanu, G.S. Kar, G.V. Groeseneken, and M. Jurczak, Analysis of complementary RRAM switching. IEEE Electron Device Lett. 33(8) (2012), pp. 1186.
  • A. Hardtdegen, C. La Torre, H. Zhang, C. Funck, S. Menzel, R. Waser, and S. Hoffmann-Eifert, Internal cell resistance as the origin of abrupt reset behavior in HfO2-based devices determined from current compliance series, 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 2016. doi:10.1109/IMW.2016.7495280
  • Juelich Aachen Resistive Switching Tools (JART). Available at www.emrl.de/jart.html (access date: 15 June 2022).
  • M. von Witzleben, K. Fleck, C. Funck, B. Baumkötter, M. Zuric, A. Idt, T. Breuer, R. Waser, U. Böttger, and S. Menzel, Investigation of the impact of high temperatures on the switching kinetics of redox-based resistive switching cells using a high-speed nanoheater. Adv. Electron. Mat. 3(12) (2017), pp. 1700294.
  • E. Yalon, A.A. Sharma, M. Skowronski, J.A. Bain, D. Ritter, and I.V. Karpov, Thermometry of filamentary RRAM devices. IEEE Trans. Electron Devices 62(9) (2015), pp. 2972.
  • E. Yalon, I. Riess, and D. Ritter, Heat dissipation in resistive switching devices: Comparison of thermal simulations and experimental results. IEEE Trans. Electron Devices 61(4) (2014), pp. 1137.
  • F. Cueppers, S. Menzel, C. Bengel, A. Hardtdegen, M. von Witzleben, U. Boettger, R. Waser, and S. Hoffmann-Eifert, Exploiting the switching dynamics of HfO2-based ReRAM devices for reliable analog memristive behavior. APL Mater. 7(9) (2019), pp. 91105/1.
  • C. Bengel, A. Siemon, F. Cüppers, S. Hoffmann-Eifert, A. Hardtdegen, M. von Witzleben, L. Helllmich, R. Waser, and S. Menzel, Variability-aware modeling of filamentary oxide based bipolar resistive switching cells using SPICE level compact models, IEEE Trans. Circuits Syst. I Reg. Papers 1 67(12) (2020), pp. 4618.
  • L. Goux, Y. Chen, L. Pantisano, X. Wang, G. Groeseneken, M. Jurczak, and D.J. Wouters, On the gradual unipolar and bipolar resistive switching of TiN ∖ HfO2 ∖ Pt memory systems. Electrochem. Solid State Lett. 13(6) (2010), pp. G54.
  • J.H. Oh, K.C. Ryoo, S. Jung, Y. Park, and B.G. Park, Effect of oxidation amount on gradual switching behavior in reset transition of Al/TiO2-based resistive switching memory and its mechanism for multilevel cell operation, Jpn. J. Appl. Phys. 51(4) (2012), pp. 4DD16/1.
  • S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.P. Wong, An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation. IEEE Trans. Electron Devices 58 (2011), pp. 2729.
  • L. Zhao, H. Chen, S. Wu, Z. Jiang, S. Yu, T. Hou, H.P. Wong, and Y. Nishi, Multi-level control of conductive nano-filament evolution in HfO2 ReRAM by pulse-train operations. Nanoscale 6 (2014), pp. 5698.
  • J.P. Strachan, A.C. Torrezan, F. Miao, M.D. Pickett, J.J. Yang, W. Yi, G. Medeiros-Ribeiro, and R.S. Williams, State dynamics and modeling of tantalum oxide memristors. IEEE Trans. Electron Devices 60(7) (2013), pp. 2194.
  • D. Ielmini, S. Balatti, and S. Larentis, Filament evolution during set and reset transitions in oxide resistive switching memory, Jpn. J. Appl. Phys. 52(4) (2013), pp. UNSP 04CD10.
  • S. Deshmukh, R. Islam, C. Chen, E. Yalon, K.C. Saraswat, and E. Pop, Thermal modeling of metal oxides for highly scaled nanoscale RRAM, 2015 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Washington, DC, USA, 2015. doi:10.1109/SISPAD.2015.7292314
  • C. Ho, C.L. Hsu, C.C. Chen, J.T. Liu, C.S. Wu, C.C. Huang, C. Hu, and F.L. Yang, 9nm half-pitch functional resistive memory cell with < 1 mu a programming current using thermally oxidized sub-stoichiometric WOx film, 2010 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2010. doi:10.1109/IEDM.2010.5703389
  • K.-S. Li, C.H. Ho, M.-T. Lee, M.-C. Chen, C.-L. Hsu, J. Lu, C. Lin, C. Chen, B. Wu, Y. Hou, C. Lin, Y. Chen, T. Lai, M. Li, I. Yang, C. Wu, and F.-L. Yang, Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication, 2014 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2014. doi:10.1109/VLSIT.2014.6894402
  • S. Pi, C. Li, H. Jiang, W. Xia, H. Xin, J.J. Yang, and Q. Xia, Memristor crossbar arrays with 6-nm half-pitch and 2-nm critical dimension. Nat. Nanotechnol. 14(1) (2019), pp. 35.
  • H.S. Yoon, I. Baek, J. Zhao, H. Sim, M.Y. Park, H. Lee, G. Oh, J.C. Shin, I. Yeo, and U. Chung, Vertical cross-point resistance change memory for ultra-high density non-volatile memory applications, 2009 IEEE Symposium on VLSI Technology, Kyoto, Japan, 2009.
  • I.G. Baek, C.J. Park, H. Ju, D.J. Seong, H.S. Ahn, J.H. Kim, M.K. Yang, S.H. Song, E.M. Kim, S.O. Park, C.H. Park, C.W. Song, G.T. Jeong, S. Choi, H.K. Kang, and C. Chung, Realization of vertical resistive memory (VRRAM) using cost effective 3D process, 2011 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2011. doi:10.1109/IEDM.2011.6131654
  • C. Li, L. Han, H. Jiang, M.-H. Jang, P. Lin, Q. Wu, M. Barnell, J.J. Yang, H.L. Xin, and Q. Xia, Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8 (2017), pp. 15666.
  • Q. Luo, X. Xu, T. Gong, H. Lv, D. Dong, H. Ma, P. Yuan, J. Gao, J. Liu, Z. Yu, J. Li, S. Long, Q. Liu, and M. Liu, 8-layers 3D vertical RRAM with excellent scalability towards storage class memory applications, 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017. doi:10.1109/IEDM.2017.8268315
  • D.B. Strukov and K.K. Likharev, CMOL FPGA: A reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology 16(6) (2005), pp. 888.
  • D.B. Strukov and R.S. Williams, Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. PNAS 106(48) (2009), pp. 20155.
  • M.H. Lee and C.S. Hwang, Resistive switching memory: Observations with scanning probe microscopy. Nanoscale 3(2) (2011), pp. 490.
  • U. Celano, A. Fantini, R. Degraeve, M. Jurczak, L. Goux, and W. Vandervorst, Scalability of valence change memory: From devices to tip-induced filaments. AIP Adv. 6(8) (2016), pp. 85009/1.
  • U. Celano, L. Goux, A. Belmonte, A. Schulze, K. Opsomer, C. Detavernier, O. Richard, H. Bender, M. Jurczak, and W. Vandervorst, Conductive-AFM tomography for 3D filament observation in resistive switching devices 2013, IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013. doi:10.1109/IEDM.2013.6724679
  • M. Lanza, K. Zhang, M. Porti, M. Nafría, Z.Y. Shen, L.F. Liu, J.F. Kang, D. Gilmer, and G. Bersuker, Grain boundaries as preferential sites for resistive switching in the HfO2 resistive random access memory structures. Appl. Phys. Lett. 100 (2012), pp. 123508.
  • K. Szot, R. Dittmann, W. Speier, and R. Waser, Nanoscale resistive switching in SrTiO3 thin films. Phys. Status Solidi Rapid Res. Lett. 1(2) (2007), pp. R86.
  • S.P. Waldow and R.A. De Souza, Computational study of oxygen diffusion along a[100] dislocations in the perovskite oxide SrTiO3. ACS Appl. Mater. Interfaces 8 (2016), pp. 12246.
  • C. Rodenbücher, S. Menzel, D. Wrana, T. Gensch, C. Korte, F. Krok, and K. Szot, Current channeling along extended defects during electroreduction of SrTiO3, Sci. Rep. 9 (2019), pp. 2502.
  • C.L. Jia, L. Houben, and K. Urban, Atom vacancies at a screw dislocation core in SrTiO3. Philos. Mag. Lett. 86(11) (2006), pp. 683.
  • H. Du, C.-L. Jia, L. Houben, V. Metlenko, R.A. De Souza, R. Waser, and J. Mayer, Atomic structure and chemistry of dislocation cores at low-angle tilt grain boundary in SrTiO3 bicrystals. Acta Mater. 89 (2015), pp. 344.
  • Y. Sakotsubo, M. Terai, S. Kotsuji, Y. Saito, M. Tada, Y. Yabe, H., and Hada. A new approach for improving operating margin of unipolar ReRAM using local minimum of reset voltage, 2010 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2010. doi:10.1109/IEDM.2010.5703391
  • S. Wiefels, C. Bengel, N. Kopperberg, K. Zhang, R. Waser, and S. Menzel, HRS instability in oxide-based bipolar resistive switching cells. IEEE Trans. Electron Devices 67(10) (2020), pp. 4208.
  • G. Medeiros-Ribeiro, F. Perner, R. Carter, H. Abdalla, M.D. Pickett, and R.S. Williams, Lognormal switching times for titanium dioxide bipolar memristors: Origin and resolution. Nanotechnology 22(9) (2011), pp. 95702/1.
  • R. Naous, A. Siemon, M. Schulten, H. Alahmadi, A. Kindsmüller, M. Lübben, A. Heittmann, R. Waser, K.N. Salama, and S. Menzel, Sci. Rep. 11 (2021), pp. 4218.
  • S. Aldana, P. Garcia-Fernandez, A. Rodriguez-Fernandez, R. Romero-Zaliz, M. Gonzalez, F. Jimenez-Molinos, F. Campabadal, F. Gomez-Campos, and J. Roldan, A 3D kinetic Monte Carlo simulation study of resistive switching processes in Ni/HfO2 /Si-n+-based RRAMs. Phys. D Appl. Phys 50 (2017), pp. 335103.
  • E. Perez, D. Maldonado, C. Acal, J. Ruiz-Castro, F. Alonso, A. Aguilera, F. Jiménez-Molinos, C. Wenger, and J. Roldán, Analysis of the statistics of device-to-device and cycle-to-cycle variability in TiN/Ti/Al:HfO2/TiN RRAMs. Microelectron. Eng. 214 (2019), pp. 104.
  • R. Degraeve, P. Roussel, L. Goux, D. Wouters, J. Kittl, L. Altimime, M. Jurczak, and G. Groeseneken, Generic learning of TDDB applied to RRAM for improved understanding of conduction and switching mechanism through multiple filaments, 2010 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2010. doi:10.1109/IEDM.2010.5703438
  • C. Bengel, F. Cüppers, M. Payvand, R. Dittmann, R. Waser, S. Hoffmann-Eifert, and S. Menzel, Utilizing the switching stochasticity of HfO2/TiOx-based ReRAM devices and the concept of multiple device synapses for the classification of overlapping and noisy patterns. Front. Neurosci. 15 (2021), pp. 621.
  • M. Lanza, R. Waser, D. Ielmini, J.J. Yang, L. Goux, J. Suñe, A.J. Kenyon, A. Mehonic, S. Spiga, V. Rana, S. Wiefels, S. Menzel, I. Valov, M.A. Villena, E. Miranda, X. Jing, F. Campabadal, M.B. Gonzalez, F. Aguirre, F. Palumbo, K. Zhu, J.B. Roldan, F.M. Puglisi, L. Larcher, T. Hou, T. Prodromakis, Y. Yang, P. Huang, T. Wan, Y. Chai, K.L. Pey, N. Raghavan, S. Dueñas, T. Wang, Q. Xia, and S. Pazos, Standards for the characterization of endurance in resistive switching devices. ACS Nano 15(11) (2021), pp. 17214–17231.
  • Y.-B. Kim, S.R. Lee, D. Lee, C.B. Lee, M. Chang, J. H. Hur, M.-J. Lee, G.-S. Park, C. J. Kim, U-I. Chung, I.-K. Yoo, and K. Kim, Bi-layered RRAM with unlimited endurance and extremely uniform switching, 2011 IEEE Symposium on VLSI Technology, Kyoto, Japan, 2011.
  • Y. Chen, B. Govoreanu, L. Goux, R. Degraeve, A. Fantini, G. Kar, D. Wouters, G. Groeseneken, J. Kittl, M. Jurczak, and L. Altimime, Balancing SET/RESET pulse for >1010 endurance in HfO2Hf 1T1R bipolar RRAM. IEEE Trans. Electron Devices 59(12) (2012), pp. 3243.
  • F.M. Puglisi, C. Wenger, and P. Pavan, A novel program-verify algorithm for multi-bit operation in HfO2 RRAM. IEEE Electron Device Lett. 36(10) (2015), pp. 1030.
  • E. Perez, C. Zambelli, M.K. Mahadevaiah, P. Olivo, and C. Wenger, Toward reliable multi-level operation in RRAM arrays: Improving post-algorithm stability and assessing endurance/data retention. IEEE J. Electron Devices Soc. 7 (2019), pp. 740.
  • E.R. Hsieh, X. Zheng, B.Q. Le, Y.C. Shih, R.M. Radway, M. Nelson, S. Mitra, and S. Wong, Four-bits-per-memory one-transistor-and-eight-resistive-random-access-memory (1T8R) array. IEEE Electron Device Lett. 42(3) (2021), pp. 335.
  • B.Q. Le, A. Levy, T.F. Wu, R.M. Radway, E.R. Hsieh, X. Zheng, M. Nelson, P. Raina, H.-S.P. Wong, S. Wong, and S. Mitra, RADAR: A fast and energy-efficient programming technique for multiple bits-per-cell RRAM arrays. IEEE Trans. Electron Devices 68(9) (2021), pp. 4397.
  • M. Alayan, E. Muhr, A. Levisse, M. Bocquet, M. Moreau, E. Nowak, G. Molas, E. Vianello, and J.M. Portal, Switching event detection and self-termination programming circuit for energy efficient ReRAM memory arrays. IEEE Trans. Circuits Syst. II. Exp. Briefs 66(5) (2019), pp. 748.
  • A. Levisse, M. Bocquet, M. Rios, M. Alayan, M. Moreau, E. Nowak, G. Molas, E. Vianello, D. Atienza, and J.-M. Portal, Write termination circuits for RRAM: A holistic approach from technology to application considerations. IEEE Access 8 (2020), pp. 109297.
  • H. Jiang and D.A. Stewart, Using dopants to tune oxygen vacancy formation in transition metal oxide resistive memory. ACS Appl. Mater. Interfaces 9 (2017), pp. 16296.
  • Y.Y. Chen, R. Roelofs, A. Redolfi, R. Degraeve, D. Crotti, A. Fantini, S. Clima, B. Govoreanu, M. Komura, L. Goux, L. Zhang, A. Belmonte, Q. Xie, J. Maes, G. Pourtois, and M. Jurczak, Tailoring switching and endurance/retention reliability characteristics of HfO2/Hf RRAM with Ti, Al, Si dopants, 2014 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2014. doi:10.1109/VLSIT.2014.6894403
  • S. Wan, R. Dittmann, U. Breuer, and R. Waser, Improved endurance behavior of resistive switching in (Ba,Sr)TiO3 thin films with W top electrode. Appl. Phys. Lett. 93(22) (2008), pp. 222102.
  • Y. Guo and J. Robertson, Materials selection for oxide-based resistive random access memories. Appl. Phys. Lett. 105(22) (2014), pp. 223516.
  • S. Wiefels, M. von Witzleben, M. Hüttemann, U. Böttger, R. Waser, and S. Menzel, Impact of the ohmic electrode on the endurance of oxide-based resistive switching memory. IEEE Trans. Electron Devices 68(3) (2021), pp. 1024.
  • P. Su, C. Jiang, C. Wang, and T. Wang, Modeling of read-disturb-induced SET-state current degradation in a tungsten oxide resistive switching memory. IEEE Electron Device Lett. 39(11) (2018), pp. 1648.
  • F.M. Puglisi, N. Zagni, L. Larcher, and P. Pavan, Random telegraph noise in resistive random access memories: Compact modeling and advanced circuit design. IEEE Trans. Electron Devices 65(7) (2018), pp. 2964.
  • E. Perez, M.K. Mahadevaiah, E.P. Quesada, and C. Wenger, Variability and energy consumption tradeoffs in multilevel programming of RRAM arrays. IEEE Trans. Electron Devices 68 (2021), pp. 2693.
  • S. Ambrogio, S. Balatti, V. McCaffrey, D. C. Wang, and D. Ielmini, Noise-induced resistance broadening in resistive switching memory – part II: Array statistics. IEEE Trans. Electron Devices 62 (2015), pp. 3812.
  • E. Abbaspour, S. Menzel, and C. Jungemann, Random telegraph noise analysis in redox-based resistive switching devices using KMC simulations, 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Kamakura, Japan, 2017.
  • Y.S. Chen, H.Y. Lee, P.S. Chen, P.Y. Gu, C.W. Chen, W.P. Lin, W.H. Liu, Y.Y. Hsu, S.S. Sheu, P.C. Chiang, W.S. Chen, F.T. Chen, C.H. Lien, and M. Tsai, Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity, 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009. doi:10.1109/IEDM.2009.5424411
  • N. Raghavan, R. Degraeve, A. Fantini, L. Goux, S. Strangio, B. Govoreanu, D. Wouters, G. Groeseneken, and M. Jurczak, Microscopic origin of random telegraph noise fluctuations in aggressively scaled RRAM and its impact on read disturb variability, 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 2013. doi:10.1109/IRPS.2013.6532042
  • J.K. Lee, J.W. Lee, J. Park, S.W. Chung, J.S. Roh, S.J. Hong, I.W. Cho, H.I. Kwan, and J.H. Lee, Extraction of trap location and energy from random telegraph noise in amorphous TiOx resistance random access memories. Appl. Phys. Lett. 98 (2011), pp. 143502.
  • S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, and D. Ielmini, Statistical fluctuations in HfOx resistive-switching memory: Part II – random telegraph noise. IEEE Trans. Electron Devices 61 (2014), pp. 2920.
  • S. Brivio, J. Frascaroli, E. Covi, and S. Spiga, Stimulated ionic telegraph noise in filamentary memristive devices. Sci. Rep. 9 (2019), pp. 6310.
  • R. Degraeve, L. Goux, S. Clima, B. Govoreanu, Y.Y. Chen, G.S. Kar, P. Rousse, G. Pourtois, D.J. Wouters, L. Altimime, M. Jurczak, G. Groeseneken, and J. A. Kittl, Modeling and tuning the filament properties in RRAM metal oxide stacks for optimized stable cycling, 2012 International Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, 2012. doi:10.1109/VLSI-TSA.2012.6210101
  • D. Ielmini, F. Nardi, and C. Cagli, Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories. Appl. Phys. Lett. 96(5) (2010), pp. 53503/1.
  • D. Veksler, G. Bersuker, B. Chakrabarti, E. Vogel, S. Deora, K. Matthews, D.C. Gilmer, H.F. Li, S. Gausepohl, and P.D. Kirsch, Methodology for the statistical evaluation of the effect of random telegraph noise (RTN) on RRAM characteristics, 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012. doi:10.1109/IEDM.2012.6479013
  • A. Fantini, G. Gorine, R. Degraeve, L. Goux, C. Chen, A. Redolfi, S. Clima, A. Cabrini, G. Torelli, and M. Jurczak, Intrinsic program instability in HfO2 RRAM and consequences on program algorithms, 2015 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2015. doi:10.1109/IEDM.2015.7409648
  • C. Wang, H. Wu, B. Gao, L. Dai, N. Deng, D.C. Sekar, Z. Lu, M. Kellam, G. Bronner, and H. Qian, Relaxation effect in RRAM arrays: Demonstration and characteristics. IEEE Electron Device Lett. 37(2) (2016), pp. 182.
  • C. Wang, H. Wu, B. Gao, L. Dai, N. Deng, D. Sekar, Z. Lu, M. Kellam, G. Bronner, and H. Qian, Appl. Phys. Express 9(5) (2016), pp. 51501/1.
  • Y.Y. Chen, R. Degraeve, S. Clima, B. Govoreanu, L. Goux, and A. Fantini, Understanding of the endurance failure in scaled HfO2-based 1T1R RRAM through vacancy mobility degradation, 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2012. doi:10.1109/IEDM.2012.6479079
  • C.Y. Chen, A. Fantini, L. Goux, G. Gorine, A. Redolfi, G. Groeseneken, and M. Jurczak, Novel flexible and cost-effective retention assessment method for TMO-based RRAM. IEEE Electron Device Lett. 37(9) (2016), pp. 1112.
  • Z. Wei, T. Takagi, Y. Kanzawa, Y. Katoh, T. Ninomiya, K. Kawai, S. Muraoka, S. Mitani, K. Katayama, S. Fujii, R. Miyanaga, Y. Kawashima, T. Mikawa, K. Shimakawa, and K. Aono, Retention model for high-density ReRAM, 2012 IEEE International Memory Workshop (IMW), Milan, Italy, 2012. doi:10.1109/IMW.2012.6213638
  • S. Yu, Y.Y. Chen, X. Guan, H. Wong, and J.A. Kittl, A Monte Carlo study of the low resistance state retention of HfOx based resistive switching memory, Appl. Phys. Lett. 100(4) (2012), pp. 43507/1.
  • Y. Chen, L. Goux, S. Clima, B. Govoreanu, R. Degraeve, G. Kar, A. Fantini, G. Groeseneken, D. Wouters, and M. Jurczak, Endurance/retention trade-off on HfO2/metal cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3) (2013), pp. 1114.
  • T. Ninomiya, S. Muraoka, Z. Wei, R. Yasuhara, K. Katayama, and T. Takagi, Improvement of data retention during long-term use by suppressing conductive filament expansion in TaOx bipolar-ReRAM. IEEE Electron Device Lett. 34(6) (2013), pp. 762.
  • B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X. Y. Liu, R.Q. Han, J.F. Kang, B. Yu, and Y.Y. Wang, Oxide-based RRAM switching mechanism: A new ion-transport-recombination model, 2008 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2008. doi:10.1109/IEDM.2008.4796751
  • L. Goux, A. Fantini, Y.Y. Chen, A. Redolfi, R. Degraeve, and M. Jurczak, Evidences of electrode-controlled retention properties in Ta2O5-based resistive-switching memory cells. ECS Solid State Lett. 3(11) (2014), pp. Q79.
  • N. Raab, C. Bäumer, and R. Dittmann, Impact of the cation-stoichiometry on the resistive switching and data retention of SrTiO3 thin films. AIP Adv. 5 (2015), pp. 047150.
  • D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications. Appl. Phys. Lett. 88 (2006), pp. 082904.
  • S. Clima, B. Govoreanu, M. Jurczak, and G. Pourtois, HfOx as RRAM material - First principles insights on the working principles, Microelectronic Engineering 120 (2013), pp. 13–18.
  • L. Goux, A. Fantini, G. Kar, Y. Chen, N. Jossart, R. Degraeve, S. Clima, B. Govoreanu, G. Lorenzo, G. Pourtois, D. Wouters, J. Kittl, L. Altimime, and M. Jurczak, Ultralow sub-500nA operating current high-performance TiN\Al2O3\HfO2\Hf\TiN bipolar RRAM achieved through understanding-based stack-engineering, 2012 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 2012. doi:10.1109/VLSIT.2012.6242510
  • M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev, and D.B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550) (2015), pp. 61.
  • X. Huang, H. Wu, B. Gao, D.C. Sekar, L. Dai, M. Kellam, G. Bronner, N. Deng, and H. Qian, Nanotechnology 27(39) (2016), pp. 395201/1.
  • F.V.E. Hensling, T. Heisig, N. Raab, C. Baeumer, and R. Dittmann, Tailoring the switching performance of resistive switching SrTiO3 devices by SrO interlayer engineering, SSI 325 (2018), pp. 247.
  • S. Wiefels, U. Böttger, S. Menzel, D. J. Wouters, and R. Waser, Statistical modeling and understanding of HRS retention in 2.5 Mb HfO2 based ReRAM, 2020 IEEE 12th International Memory Workshop, Dresden, Germany, 2020. doi:10.1109/IMW48823.2020.9108123
  • N. Kopperberg, S. Wiefels, S. Liberda, R. Waser, and S. Menzel, A consistent model for short-term instability and long-term retention in filamentary oxide-based memristive devices. ACS Appl. Mater. Interfaces 13(48) (2021), pp. 58066.
  • M. Schie, M.P. Mueller, M. Salinga, R. Waser, and R.A. De Souza, Ion migration in crystalline and amorphous HfOX. J. Chem. Phys. 146(9) (2017), pp. 94508/1.
  • L. Goux, A. Fantini, R. Degraeve, N. Raghavan, R. Nigon, S. Strangio, G. Kar, D.J. Wouters, Y.Y. Chen, M. Komura, F. De Stefano, V.V. Afanas’ev, and M. Jurczak, Understanding of the intrinsic characteristics and memory trade-offs of sub-μA filamentary RRAM operation, 2013 IEEE Symposium on VLSI Technology, Kyoto, Japan, 2013.
  • N. Raghavan, R. Degraeve, A. Fantini, L. Goux, D. Wouters, G. Groeseneken, and M. Jurczak, Stochastic variability of vacancy filament configuration in ultra-thin dielectric RRAM and its impact on OFF-state reliability, 2013 IEEE International Electron Devices Meeting (IEDM), Washington, DC, USA, 2013. doi:10.1109/IEDM.2013.6724674
  • J.L. Rieck, F.V.E. Hensling, and R. Dittmann, Trade-off between variability and retention of memristive epitaxial SrTiO3 devices. APL Mater 9(2) (2021), pp. 21110/1.
  • G. Sassine, D. Alfaro Robayo, C. Nail, J.-F. Nodin, J. Coignus, G. Molas, and E. Nowak, Optimizing programming energy for improved RRAM reliability for high endurance applications, 2018 IEEE International Memory Workshop (IMW), Kyoto, Japan, 2018. doi:10.1109/IMW.2018.8388843
  • M. Azzaz, E. Vianello, B. Sklenard, P. Blaise, A. Roule, C. Sabbione, S. Bernasconi, C. Charpin, C. Cagli, E. Jalaguier, S. Jeannot, S. Denorme, P. Candelier, M. Yu, L. Nistor, C. Fenouillet-Beranger, and L. Perniola, Endurance/retention trade off in HfOx and TaOx based RRAM, 2016 IEEE International Memory Workshop (IMW), Paris, France, 2016. doi:10.1109/IMW.2016.7495268
  • C. Nail, G. Molas, P. Blaise, G. Piccolboni, B. Sklenard, C. Cagli, M. Bernard, A. Roule, M. Azzaz, E. Vianello, C. Carabasse, R. Berthier, D. Cooper, C. Pelissier, T. Magis, G. Ghibaudo, C. Vallee, D. Bedeau, O. Mosendz, B. De Salvo, and L. Perniola, Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations, 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2016. doi:10.1109/IEDM.2016.7838346
  • A. Fantini, L. Goux, S. Clima, R. Degraeve, A. Redolfi, C. Adelmann, G. Polimeni, Y. Y. Chen, M. Komura, A. Belmonte, D. J. Wouters, and M. Jurczak, Engineering of Hf 1-xAl xO y amorphous dielectrics for high-performance RRAM applications, 2014 IEEE International Memory Workshop (IMW), Taipei, Taiwan, 2014. doi:10.1109/IMW.2014.6849354

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.