154
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Martingales for physicists: a treatise on stochastic thermodynamics and beyond

ORCID Icon, ORCID Icon, , ORCID Icon, , & show all
Received 20 Feb 2023, Accepted 25 Jan 2024, Published online: 22 May 2024

References

  • H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478 (2009) pp. 1–69.
  • N.G. Van Kampen, Stochastic Processes in Physics and Chemistry, Vol. 1, Elsevier, Amsterdam, 1992.
  • H. Risken, The Fokker–Planck Equation. Methods of Solution and Applications, Springer Series in Synergetics, 1989).
  • C.W. Gardiner, Handbook of Stochastic Methods, Vol. 3, Springer Berlin, Berlin, 1985.
  • H. Haken, M. Cardona, P. Fulde and H. Queisser, Springer Series in Synergetics, M. Cardona, P. Fulde, and H.-J. Queisser, eds., Vol. 269, 1983.
  • P. Hänggi and H. Thomas, Stochastic processes: Time evolution, symmetries and linear response, Phys. Rep. 88 (1982) pp. 207–319.
  • R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford University Press, Oxford, 2001.
  • S. Redner, A Guide to First-Passage Processes, Cambridge University Press, Cambridge, 2001.
  • M.D. Cervantes Saavedra, El ingenioso hidalgo don quijote de la mancha (1605).
  • R. Chetrite and S. Gupta, Two refreshing views of fluctuation theorems through kinematics elements and exponential martingale, J. Stat. Phys. 143 (2011) p. 543.
  • I. Neri, É. Roldán and F. Jülicher, Statistics of infima and stopping times of entropy production and applications to active molecular processes, Phys. Rev. X. 7 (2017) p. 011019.
  • S. Pigolotti, I. Neri, É. Roldán and F. Jülicher, Generic properties of stochastic entropy production, Phys. Rev. Lett. 119 (2017) p. 140604.
  • I. Neri and F. Jülicher, Integral fluctuation relations for entropy production at stopping times, J. Stat. Mech. Theory Exp. 2019 (2019) p. 104006.
  • I. Neri, Second law of thermodynamics at stopping times, Phys. Rev. Lett. 124 (2020) p. 040601.
  • G. Manzano, D. Subero, O. Maillet, R. Fazio, J.P. Pekola and É. Roldán, Thermodynamics of gambling demons, Phys. Rev. Lett. 126 (2021) p. 080603.
  • H. Ge, C. Jia and X. Jin, Martingale structure for general thermodynamic functionals of diffusion processes under second-order averaging, J. Stat. Phys. 184 (2021) pp. 1–41.
  • R. Mansuy, The origins of the word martingale, Electron. J. History Probab. Stat. 5 (2009) pp. 1–10.
  • L. Bienvenu, G. Shafer and A. Shen, On the history of martingales in the study of randomness, Electron. J. History Probab. Stat. 5 (2009) pp. 1–40.
  • K. Krickeberg, My encounters with martingales, Electron. J. History Proab. Stat. 5 (2009). https://www.jehps.net/juin2009/Krickeberg.pdf.
  • Memoires of casanova. Available at https://archive.org/stream/thecompletememoi02981gut/2981.txt.
  • J. Ville, Etude critique de la notion de collectif, Bull. Amer. Math. Soc 45 (1939) p. 824.
  • J.L. Doob, Stochastic Processes, Wiley Classics Library ed., John Wiley & Sons, Hoboken, 1990.
  • D.W. Stroock and S.S. Varadhan, Multidimensional Diffusion Processes, Springer, Berlin, 2007.
  • H. Kunita and S. Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967) pp. 209–245.
  • K. Sekimoto, Stochastic Energetics, Lecture Notes in Physics, Vol. 799), Springer, 2010).
  • U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys. 75 (2012) p. 126001.
  • L. Peliti and S. Pigolotti, Stochastic Thermodynamics: An Introduction, Princeton University Press, Princeton, 2021.
  • R. Chétrite, S. Gupta, I. Neri and É. Roldán, Martingale theory for housekeeping heat, Europhys. Lett. 124 (2019) p. 60006.
  • K. Cheng, J.-Q. Dong, W.-H. Han, F. Liu and L. Huang, Infima statistics of entropy production in an underdamped brownian motor, Phys. Rev. E. 102 (2020) p. 062127.
  • Y.-J. Yang and H. Qian, Nonequilibrium stationary process and fluctuation–dissipation relations, preprint (2021). Available at arXiv, arXiv:2106.13374.
  • A. Faggionato and V. Silvestri, A martingale approach to time-dependent and time-periodic linear response in Markov jump processes, preprint (2022). Available at arXiv, arXiv:2201.02982.
  • I. Neri and M. Polettini, Extreme value statistics of edge currents in Markov jump processes and their use for entropy production estimation, SciPost Phys. 14 (2023) p. 131.
  • S. Singh, É. Roldán, I. Neri, I.M. Khaymovich, D.S. Golubev, V.F. Maisi, J.T. Peltonen, F. Jülicher and J.P. Pekola, Extreme reductions of entropy in an electronic double dot, Phys. Rev. B. 99 (2019) p. 115422.
  • É. Roldán, I. Neri, M. Dörpinghaus, H. Meyr and F. Jülicher, Decision making in the arrow of time, Phys. Rev. Lett. 115 (2015) p. 250602.
  • I. Neri, Universal tradeoff relation between speed, uncertainty, and dissipation in nonequilibrium stationary states, SciPost Phys. 12 (2022) p. 139.
  • A.C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett. 114 (2015) p. 158101.
  • P. Pietzonka, A.C. Barato and U. Seifert, Universal bounds on current fluctuations, Phys. Rev. E. 93 (2016) p. 052145.
  • T.R. Gingrich, J.M. Horowitz, N. Perunov and J.L. England, Dissipation bounds all steady-state current fluctuations, Phys. Rev. Lett. 116 (2016) p. 120601.
  • H.-M. Chun and J.D. Noh, Universal property of the housekeeping entropy production, Phys. Rev. E. 99 (2019) p. 012136.
  • G. Manzano, R. Fazio and É. Roldán, Quantum martingale theory and entropy production, Phys. Rev. Lett. 122 (2019) p. 220602.
  • A. Guillet, E. Roldán and F. Jülicher, Extreme-value statistics of stochastic transport processes, New. J. Phys. 22 (2020) p. 123038.
  • G. Manzano and É. Roldán, Survival and extreme statistics of work, heat, and entropy production in steady-state heat engines, Phys. Rev. E. 105 (2022) p. 024112.
  • T. Fujita, Random walks and stochastic calculus, Nippon-Hyoron-Sha., 2008.
  • W. Feller, An Introduction to Probability Theory and Its Applications, 1957. https://www.wiley.com/en-us/An+Introduction+to+Probability+Theory+and+Its+Applications%2C+Volume+1%2C+3rd+Edition-p-9780471257080.
  • D. Williams, Probability with Martingales, Cambridge University Press, Cambridge, 1991.
  • S. Shreve, Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer Science & Business Media, Berlin, 2005.
  • A. Tartakovsky, I. Nikiforov and M. Basseville, Sequential Analysis: Hypothesis Testing and Changepoint Detection, CRC Press, Boca Raton, 2014.
  • S. Asmussen and H. Hering, Branching Processes, Vol. 3, Springer, Berlin, 1983.
  • G. Grimmett and D. Stirzaker, Probability and Random Processes, 2nd ed., Oxford University Press, Oxford, 1992.
  • P. Haccou, P. Haccou, P. Jagers, V.A. Vatutin and V. Vatutin, Branching Processes: Variation, Growth, and Extinction of Populations, No. 5, Cambridge University Press, Oxford, 2005.
  • K.B. Athreya and P. Ney, Branching Processes, Springer-Verlag, Berlin, 1972.
  • G.M. Schütz and S. Trimper, Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk, Phys. Rev. E. 70 (2004) p. 045101.
  • R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. General 37 (2004) p. R161.
  • I.M. Tolić-Nørrelykke, E. -L. Munteanu, G. Thon, L. Oddershede and K. Berg-Sørensen, Anomalous diffusion in living yeast cells, Phys. Rev. Lett. 93 (2004) p. 078102.
  • K.M. Douglass, S. Sukhov and A. Dogariu, Superdiffusion in optically controlled active media, Nat. Photonics. 6 (2012) pp. 834–837.
  • R. Golestanian, Anomalous diffusion of symmetric and asymmetric active colloids, Phys. Rev. Lett. 102 (2009) p. 188305.
  • S.R. Hart, M.D. Kurz and Z. Wang, Scale length of mantle heterogeneities: Constraints from helium diffusion, Earth. Planet. Sci. Lett. 269 (2008) pp. 508–517.
  • B. Bercu, A martingale approach for the elephant random walk, J. Phys. A: Math. Theor. 51 (2017) p. 015201.
  • L. Laulin, New insights on the reinforced elephant random walk using a martingale approach, J. Stat. Phys. 186 (2022) pp. 1–23.
  • J. Tailleur and M. Cates, Statistical mechanics of interacting run-and-tumble bacteria, Phys. Rev. Lett. 100 (2008) p. 218103.
  • M.R. Evans and S.N. Majumdar, Run and tumble particle under resetting: A renewal approach, J. Phys. A: Math. Theor. 51 (2018) p. 475003.
  • K. Malakar, V. Jemseena, A. Kundu, K.V. Kumar, S. Sabhapandit, S.N. Majumdar, S. Redner and A. Dhar, Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension, J. Statist. Mechanics Theory Exp 2018 (2018) p. 043215.
  • D. Williams, Diffusions, Markov Processes, and Martingales. Vol. 1, Foundations, Wiley, Hoboken, 1979.
  • B. Øksendal, Stochastic Differential Equations, Springer, Berlin, 2003.
  • T. Tao, An Introduction to Measure Theory, Vol. 126, American Mathematical Society, 2011. https://books.google.it/books/about/Statistics_of_Random_Processes.html?id=gKtK0CjxOaIC&redir_esc=y.
  • R. Liptser and A. Shiryaev, Statistics of Random Processes: I. General Theory, 2 ed., Vol. 5, Springer Science & Business Media, Berlin, 2013.
  • L. Onsager and S. Machlup, Fluctuations and irreversible processes, Phys. Rev. 91 (1953) p. 1505.
  • S. Machlup and L. Onsager, Fluctuations and irreversible process. II. Systems with kinetic energy, Phys. Rev. 91 (1953) p. 1512.
  • L.F. Cugliandolo and V. Lecomte, Rules of calculus in the path integral representation of white noise Langevin equations: the Onsager–Machlup approach, J. Phys. A: Math. Theor. 50 (2017) p. 345001.
  • P.E. Protter, Stochastic Integration and Differential Equations, 2nd ed., Springer, Berlin, 2005.
  • K.L. Chung and R.J. Williams, Introduction to Stochastic Integration, Vol. 2, Springer, Berlin, 1990.
  • K. Mallick, The exclusion process: A paradigm for non-equilibrium behaviour, Phys. A: Stat. Mech. Appl. 418 (2015) pp. 17–48.
  • H. Risken, Fokker–Planck equation, in The Fokker–Planck Equation, Springer, 1996, pp. 63–95.
  • G.A. Pavliotis, Stochastic Processes and Applications: Diffusion Processes, the Fokker–Planck and Langevin Equations, Vol. 60, Springer, Berlin, 2014.
  • D.L. Fisk, Quasi-martingales and stochastic integrals, Tech. Rep., Michigan State Univ East Lansing, 1963.
  • R.L. Stratonovich, Conditional Markov processes and their application to the theory of optimal control, 1968.
  • P. Brémaud, Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Vol. 31, Springer Science & Business Media, Berlin, 2001.
  • J.R. Norris, Markov Chains, no. 2, Cambridge University Press, Cambridge, 1998.
  • S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, Vol. 282, John Wiley & Sons, Hoboken, 2009.
  • P.G. Doyle and J.L. Snell, Random Walks and Electric Networks, Vol. 22, American Mathematical Society, 1984.
  • S.N. Majumdar and H. Orland, Effective Langevin equations for constrained stochastic processes, J. Stat. Mech. Theory Exp. 2015 (2015) p. P06039.
  • R. Chetrite and H. Touchette, Nonequilibrium Markov processes conditioned on large deviations, in Annales Henri Poincaré, Vol. 16, Springer, 2015, pp. 2005–2057.
  • J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems, Rev. Mod. Phys. 48 (1976) p. 571.
  • K.L. Chung and J.B. Walsh, Markov Processes, Brownian Motion, and Time Symmetry, Vol. 249, Springer Science & Business Media, Berlin, 2006.
  • A.C. Barato and R. Chetrite, A formal view on level 2.5 large deviations and fluctuation relations, J. Stat. Phys. 160 (2015) pp. 1154–1172.
  • D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2009.
  • R.F. Bass, SDES with jumps notes for Cornell Summer School, 2007 revised version (2007).
  • C. Maes, Local detailed balance, SciPost Phys. Lect. Notes (2021) p. 032.
  • C. Van den Broeck and M. Esposito, Ensemble and trajectory thermodynamics: A brief introduction, Phys. A: Stat. Mech. Appl. 418 (2015) pp. 6–16.
  • D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Vol. 293, Springer Science & Business Media, Berlin, 2013.
  • R. Chetrite, Fluctuation relations for diffusion that is thermally driven by a nonstationary bath, Phys. Rev. E. 80 (2009) p. 051107.
  • R. Belousov, A. Hassanali and É. Roldán, Statistical physics of inhomogeneous transport: Unification of diffusion laws and inference from first-passage statistics, preprint (2021). Available at arXiv, arXiv:2112.08353.
  • R. Kubo, The fluctuation–dissipation theorem, Rep. Prog. Phys. 29 (1966) p. 255.
  • Y.L. Klimontovich, Ito, stratonovich and kinetic forms of stochastic equations, Phys. A Stat. Mech. Appl. 163 (1990) pp. 515–532.
  • A.W. Lau and T.C. Lubensky, State-dependent diffusion: Thermodynamic consistency and its path integral formulation, Phys. Rev. E. 76 (2007) p. 011123.
  • M. Baiesi and G. Falasco, Inflow rate, a time-symmetric observable obeying fluctuation relations, Phys. Rev. E. 92 (2015) p. 042162.
  • R. Chetrite and H. Touchette, Nonequilibrium microcanonical and canonical ensembles and their equivalence, Phys. Rev. Lett. 111 (2013) p. 120601.
  • R. Chétrite, Pérégrinations sur les phénomènes aléatoires dans la nature, HDR thesis, Université de Nice-Sophia-Antipolis, France, 2018.
  • R.L. Stratonovich, On the probability functional of diffusion processes, Selected Trans. Math. Stat. Prob 10 (1971) pp. 273–286.
  • F. Langouche, D. Roekaerts and E. Tirapegui, Functional Integration and Semiclassical Expansions, Vol. 10, Springer Science & Business Media, Berlin, 2013.
  • P. Arnold, Symmetric path integrals for stochastic equations with multiplicative noise, Phys. Rev. E. 61 (2000) p. 6099.
  • J.-P. Bouchaud and M. Mézard, Universality classes for extreme-value statistics, J. Phys. A: Math. General 30 (1997) p. 7997.
  • J. Krug, Records in a changing world, J. Stat. Mech. Theory Exp. 2007 (2007) p. P07001.
  • I. Eliazar, R. Metzler and S. Reuveni, Gumbel central limit theorem for max–min and min–max, Phys. Rev. E. 100 (2019) p. 020104.
  • S.N. Majumdar, A. Pal and G. Schehr, Extreme value statistics of correlated random variables: a pedagogical review, Phys. Rep. 840 (2020) pp. 1–32.
  • L. Cheng, A. AghaKouchak, E. Gilleland and R.W. Katz, Non-stationary extreme value analysis in a changing climate, Clim. Change. 127 (2014) pp. 353–369.
  • C. Schär, N. Ban, E.M. Fischer, J. Rajczak, J. Schmidli, C. Frei, F. Giorgi, T.R. Karl, E.J. Kendon, A.MG.K. Tank, and Others, Percentile indices for assessing changes in heavy precipitation events, Clim. Change. 137 (2016) pp. 201–216.
  • S.-H. Poon, M. Rockinger and J. Tawn, Extreme value dependence in financial markets: Diagnostics, models, and financial implications, Rev. Financ. Stud. 17 (2004) pp. 581–610.
  • F. Pollaczek, Fonctions caracteristiques de certaines repartitions definies au moyen de la notion dordre-application a la theorie des attentes, C. R. Hebd. Séances L'Acad. Sci. 234 (1952) pp. 2334–2336.
  • F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Am. Math. Soc. 82 (1956) pp. 323–339.
  • F. Spitzer, The Wiener–Hopf equation whose kernel is a probability density (1957).
  • S.N. Majumdar, Universal first-passage properties of discrete-time random walks and Lévy flights on a line: Statistics of the global maximum and records, Phys. A: Stat. Mech. Appl. 389 (2010) pp. 4299–4316.
  • B. Bollobás and O. Riordan, Percolation, Cambridge University Press, Cambridge, 2006.
  • O. Häggström and J. Jonasson, Uniqueness and non-uniqueness in percolation theory (2006).
  • P.L. Bernstein and P.L. Bernstein, Against the Gods: The Remarkable Story of Risk, Wiley New York, New York, 1996.
  • P.S. de Laplace, Mémoire Sur Les Approximations Des Formules Qui Sont Fonctions De Très-grands Nombres Et Sur Leur Application Aux Probabilités, Imprimerie de Baudouin, 1810. https://books.google.it/books/about/M%C3%A9moire_sur_les_approximations_des_form.html?id=qsD1GgAACAAJ&redir_esc=y.
  • H. Fischer, A History of the Central Limit Theorem: From Classical to Modern Probability Theory, Vol. 4, Springer, Berlin, 2011.
  • P. Billingsley, Probability and Measure, John Wiley & Sons, Hoboken, 2017.
  • P. Lévy, Propriétés asymptotiques des sommes de variables aléatoires indépendentes en enchaines, J. Math. Pures Appl. 14 (1935) pp. 347–402.
  • P. Lévy, Théorie de l'Addition des Variables Aléatoires, 1937.
  • P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application, Academic Press, Cambridge, 2014. https://books.google.it/books/about/Theorie_de_l_addition_des_variables_alea.html?id=1d6iuAEACAAJ&redir_esc=y.
  • B.M. Brown, Martingale central limit theorems, The Annals of Mathematical Statistics (1971) pp. 59–66. https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-42/issue-1/Martingale-Central-Limit-Theorems/10. 1214/aoms/1177693494.full.
  • E. Baur and J. Bertoin, Elephant random walks and their connection to pólya-type urns, Phys. Rev. E. 94 (2016) p. 052134.
  • C.F. Coletti, R. Gava and G.M. Schütz, Central limit theorem and related results for the elephant random walk, J. Math. Phys. 58 (2017). https://pubs.aip.org/aip/jmp/article/58/5/053303/233463/Central-limit-theorem-and-related-results-for-the.
  • K. Ito and S. Watanabe, Transformation of Markov processes by multiplicative functionals, Ann. l'inst. Fourier 15 (1965) pp. 13–30.
  • K.D. Elworthy, X. -M. Li and M. Yor, The importance of strictly local martingales; applications to radial Ornstein–Uhlenbeck processes, Probab. Theory. Relat. Fields. 115 (1999) pp. 325–355.
  • A.N. Shiryaev, Probability, 2nd ed., 1996. https://link.springer.com/book/10. 1007/978-1-4757-2539-1.
  • S. Kotani, On a condition that one-dimensional diffusion processes are martingales, in Memoriam Paul-André Meyer, Springer, 2006, pp. 149–156.
  • A.G. Cherstvy, A.V. Chechkin and R. Metzler, Anomalous diffusion and ergodicity breaking in heterogeneous diffusion processes, New. J. Phys. 15 (2013) p. 083039.
  • C. Doléans-Dade, Quelques applications de la formule de changement de variables pour les semimartingales, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 16 (1970) pp. 181–194.
  • A.A. Novikov, A certain identity for stochastic integrals, Theory Probab. Appl. (1972) pp. 761–765. https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=tvp&paperid=4352&option_lang=eng.
  • N. Kazamaki, On a problem of girsanov, Tohoku Math. J. 29 (1977) pp. 597–600.
  • D. Kramkov and A. Shiryaev, Sufficient conditions for the uniform integrability of exponential martingales, Prog. Math. 168 (1998) pp. 289–295.
  • A. Cherny and A. Shiryaev, On criteria for the uniform integrability of Brownian stochastic exponentials, in Optimal Control and Partial Differential Equations. In honor of Alain Bensoussanas 60th Birthday.
  • P. Protter, K. Shimbo and L. Mizuho Alternative Investments, No arbitrage and general semimartingales, in Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz, Vol. 4, Institute of Mathematical Statistics, 2008, pp. 267–284.
  • P.G. Tait, Sketch of Thermodynamics, D. Douglas, 1877. https://books.google.it/books/about/Sketch_of_Thermodynamics.html?id=XRwAAAAAQAAJ&redir_esc=y.
  • J.C. Maxwell, Tait's “thermodynamics” 1, Nature 17 (1878) pp. 278–280.
  • R. Chetrite and K. Gawedzki, Fluctuation relations for diffusion processes, Commun. Math. Phys. 282 (2008) pp. 469–518.
  • K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models, J. Phys. Soc. Japan 66 (1997) pp. 1234–1237.
  • K. Sekimoto, Langevin equation and thermodynamics, Prog. Theor. Phys. Suppl. 130 (1998) pp. 17–27.
  • J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. General 31 (1998) p. 3719.
  • T.M. Cover, Elements of Information Theory, John Wiley & Sons, Hoboken, 1999.
  • U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett. 95 (2005) p. 040602.
  • D. Kondepudi and I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures, John Wiley & Sons, Hoboken, 2014.
  • C. Maes, The fluctuation theorem as a Gibbs property, J. Stat. Phys. 95 (1999) pp. 367–392.
  • M. Biskup, A. Bovier, D. Ioffe, F. Martinelli, K. Netocný, F. Toninelli, C. Maes, K. Netočný and B. Shergelashvili, A selection of nonequilibrium issues, in Methods of Contemporary Mathematical Statistical Physics, 247–306, 2009.
  • M.E. Cates, C. Nardini and E. Tjhung, Stochastic hydrodynamics of complex fluids: Discretisation and entropy production, Entropy 24 (2022) p. 254.
  • M. Nagasawa, Time reversions of Markov processes, Nagoya Math. J. 24 (1964) pp. 177–204.
  • J.M. Parrondo, C. Van den Broeck and R. Kawai, Entropy production and the arrow of time, New. J. Phys. 11 (2009) p. 073008.
  • Y. Oono and M. Paniconi, Steady state thermodynamics, Prog. Theor. Phys. Suppl. 130 (1998) pp. 29–44.
  • T. Hatano and S.-I. Sasa, Steady-state thermodynamics of Langevin systems, Phys. Rev. Lett. 86 (2001) p. 3463.
  • C. Van den Broeck and M. Esposito, Three faces of the second law. ii. Fokker–Planck formulation, Phys. Rev. E. 82 (2010) p. 011144.
  • H.B. Callen, Thermodynamics and an introduction to thermostatistics (1998).
  • M. Baiesi and C. Maes, Life efficiency does not always increase with the dissipation rate, J. Phys. Commun. 2 (2018) p. 045017.
  • H. Grad, The many faces of entropy, Commun. Pure. Appl. Math. 14 (1961) pp. 323–354.
  • O. Penrose, Foundations of Statistical Mechanics: A Deductive Treatment, Courier Corporation, North Chelmsford, 2005.
  • A. Wehrl, General properties of entropy, Rev. Mod. Phys. 50 (1978) p. 221.
  • M.C. Mackey, The dynamic origin of increasing entropy, Rev. Mod. Phys. 61 (1989) p. 981.
  • A. Wehrl, Information theoretical aspects of quantum mechanical entropy, in Information Dynamics, Springer, 1991, pp. 267–278.
  • R. Balian, Entropy, a protean concept, Prog. Math. Phys. 38 (2004) p. 119.
  • J.L. Lebowitz and H. Spohn, A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys. 95 (1999) pp. 333–365.
  • S.R. De Groot and P. Mazur, Non-equilibrium Thermodynamics, Courier Corporation, North Chelmsford, 2013.
  • G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E. 60 (1999) p. 2721.
  • R.J. Harris and G.M. Schütz, Fluctuation theorems for stochastic dynamics, J. Stat. Mech. Theory Exp. 2007 (2007) p. P07020.
  • V.Y. Chernyak, M. Chertkov and C. Jarzynski, Path-integral analysis of fluctuation theorems for general Langevin processes, J. Stat. Mech. Theory Exp. 2006 (2006) p. P08001.
  • I. Prigogine, Etude thermodynamique des processus irreversibles, desoer, liège, Citato a p. xxiii (1947).
  • G. Nicolis, Self-organization in nonequilibrium systems, in Dissipative Structures to Order through Fluctuations, 1977, pp. 339–426.
  • G. Gallavotti and E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett. 74 (1995) p. 2694.
  • C. Jarzynski, Nonequilibrium equality for free energy differences, Phys. Rev. Lett. 78 (1997) p. 2690.
  • T. Speck and U. Seifert, Integral fluctuation theorem for the housekeeping heat, J. Phys. A: Math. General 38 (2005) p. L581.
  • M. Esposito and C. Van den Broeck, Three faces of the second law. I. Master equation formulation, Phys. Rev. E. 82 (2010) p. 011143.
  • S. Vaikuntanathan and C. Jarzynski, Dissipation and lag in irreversible processes, EPL (Europhys. Lett.) 87 (2009) p. 60005.
  • G.E. Crooks, Path-ensemble averages in systems driven far from equilibrium, Phys. Rev. E. 61 (2000) p. 2361.
  • G. Hummer and A. Szabo, Free energy reconstruction from nonequilibrium single-molecule pulling experiments, Proc. Nat. Acad. Sci. 98 (2001) pp. 3658–3661.
  • A. Datta, P. Pietzonka and A.C. Barato, Second law for active heat engines, Phys. Rev. X. 12 (2022) p. 031034.
  • G. Manzano, J.M. Horowitz and J.M. Parrondo, Quantum fluctuation theorems for arbitrary environments: adiabatic and nonadiabatic entropy production, Phys. Rev. X. 8 (2018) p. 031037.
  • T.R. Gingrich and J.M. Horowitz, Fundamental bounds on first passage time fluctuations for currents, Phys. Rev. Lett. 119 (2017) p. 170601.
  • I. Neri, Estimating entropy production rates with first-passage processes, J. Phys. A: Math. Theor. 55 (2022) p. 304005.
  • L. Szilard, On the decrease of entropy in a thermodynamic system by the intervention of intelligent beings, Behav. Sci. 9 (1964) pp. 301–310.
  • H.S. Leff and A.F. Rex, Maxwell's demon and the second law. in AIP Conference Proceedings, Vol. 643, American Institute of Physics, 2002, pp. 408–419.
  • O. Bénichou, P. Krapivsky, C. Mejía-Monasterio and G. Oshanin, Temporal correlations of the running maximum of a brownian trajectory, Phys. Rev. Lett. 117 (2016) p. 080601.
  • M. Polettini and I. Neri, Multicyclic norias: A first-transition approach to extreme values of the currents, J. Stat. Phys. 191 (2024)
  • M. Bauer and F. Cornu, Affinity and fluctuations in a mesoscopic noria, J. Stat. Phys. 155 (2014) pp. 703–736.
  • H. Qian and X.S. Xie, Generalized Haldane equation and fluctuation theorem in the steady-state cycle kinetics of single enzymes, Phys. Rev. E. 74 (2006) p. 010902.
  • P. Krapivsky and S. Redner, First-passage duality, J. Stat. Mech.: Theory Exp. 2018 (2018) p. 093208.
  • A. Murugan, D.A. Huse and S. Leibler, Speed, dissipation, and error in kinetic proofreading, Proc. Nat. Acad. Sci. 109 (2012) pp. 12034–12039.
  • P. Sartori and S. Pigolotti, Thermodynamics of error correction, Phys. Rev. X. 5 (2015) p. 041039.
  • J.D. Mallory, A.B. Kolomeisky and O.A. Igoshin, Trade-offs between error, speed, noise, and energy dissipation in biological processes with proofreading, J. Phys. Chem. B 123 (2019) pp. 4718–4725.
  • G. Lan, P. Sartori, S. Neumann, V. Sourjik and Y. Tu, The energy–speed–accuracy trade-off in sensory adaptation, Nat. Phys. 8 (2012) pp. 422–428.
  • P. Pietzonka and U. Seifert, Universal trade-off between power, efficiency, and constancy in steady-state heat engines, Phys. Rev. Lett. 120 (2018) p. 190602.
  • R.P. Feynman, R.B. Leighton and M. Sands, The Feynman lectures on physics; vol. I, Am. J. Phys. 33 (1965) pp. 750–752.
  • J.M. Parrondo and P. Español, Criticism of Feynman's analysis of the ratchet as an engine, Am. J. Phys. 64 (1996) pp. 1125–1130.
  • P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81 (2009) p. 387.
  • R. Filliger and P. Reimann, Brownian gyrator: A minimal heat engine on the nanoscale, Phys. Rev. Lett. 99 (2007) p. 230602.
  • A. Argun, J. Soni, L. Dabelow, S. Bo, G. Pesce, R. Eichhorn and G. Volpe, Experimental realization of a minimal microscopic heat engine, Phys. Rev. E. 96 (2017) p. 052106.
  • S. Cerasoli, V. Dotsenko, G. Oshanin and L. Rondoni, Asymmetry relations and effective temperatures for biased Brownian gyrators, Phys. Rev. E. 98 (2018) p. 042149.
  • S.K. Manikandan, L. Dabelow, R. Eichhorn and S. Krishnamurthy, Efficiency fluctuations in microscopic machines, Phys. Rev. Lett. 122 (2019) p. 140601.
  • S. Rahav and C. Jarzynski, Nonequilibrium fluctuation theorems from equilibrium fluctuations, New. J. Phys. 15 (2013) p. 125029.
  • C. Jarzynski and D.K. Wójcik, Classical and quantum fluctuation theorems for heat exchange, Phys. Rev. Lett. 92 (2004) p. 230602.
  • M. Gavrilov and J. Bechhoefer, Arbitrarily slow, non-quasistatic, isothermal transformations, Europhys. Lett. 114 (2016) p. 50002.
  • J.M. Parrondo, J.M. Horowitz and T. Sagawa, Thermodynamics of information, Nat. Phys. 11 (2015) pp. 131–139.
  • M. Esposito and C. Van den Broeck, Second law and Landauer principle far from equilibrium, EPL (Europhys. Lett.) 95 (2011) p. 40004.
  • B. Gaveau and L. Schulman, A general framework for non-equilibrium phenomena: The master equation and its formal consequences, Phys. Lett. A 229 (1997) pp. 347–353.
  • R. Kawai, J. Parrondo and C. Van den Broeck, Dissipation: The phase-space perspective, Phys. Rev. Lett. 98 (2007) p. 080602.
  • P. Maragakis, M. Spichty and M. Karplus, A differential fluctuation theorem, J. Phys. Chem. B 112 (2008) pp. 6168–6174.
  • É. Roldán, I.A. Martinez, J.M. Parrondo and D. Petrov, Universal features in the energetics of symmetry breaking, Nat. Phys. 10 (2014) p. 457.
  • I. Junier, A. Mossa, M. Manosas and F. Ritort, Recovery of free energy branches in single molecule experiments, Phys. Rev. Lett. 102 (2009) p. 070602.
  • A. Alemany, A. Mossa, I. Junier and F. Ritort, Experimental free-energy measurements of kinetic molecular states using fluctuation theorems, Nat. Phys. 8 (2012) pp. 688–694.
  • J. Camunas-Soler, A. Alemany and F. Ritort, Experimental measurement of binding energy, selectivity, and allostery using fluctuation theorems, Science 355 (2017) pp. 412–415.
  • J.L. Lebowitz and P.G. Bergmann, Irreversible Gibbsian ensembles, Ann. Phys. (N. Y) 1 (1957) pp. 1–23.
  • B. Bresson, C. Brun, X. Buet, Y. Chen, M. Ciccotti, J. Gâteau, G. Jasion, M.N. Petrovich, F. Poletti, D.J. Richardson, S.R. Sandoghchi, G. Tessier, B. Tyukodi and D. Vandembroucq, Anisotropic superattenuation of capillary waves on driven glass interfaces, Phys. Rev. Lett. 119 (2017) p. 235501. https://link.aps.org/doi/10.1103/PhysRevLett.119.235501.
  • K. Sekimoto, Phason freezing in quasicrystals: A simple model using the freezing boundary condition, Physica. A. 170 (1990) pp. 150–186. http://www.sciencedirect.com/science/article/pii/0378437190900938.
  • M. Etienne and K. Sekimoto, Progressive quenching -- ising chain models, Acta Phys. Pol. B 49 (2018) pp. 883–892. arXiv:1710.09319v1.
  • B. Ventéjou and K. Sekimoto, Progressive quenching: Globally coupled model, Phys. Rev. E 97 (2018) p. 062150. https://link.aps.org/doi/10. 1103/PhysRevE.97.062150.
  • C. Moslonka and K. Sekimoto, Memory through a hidden martingale process in progressive quenching, Phys. Rev. E 101 (2020) p. 062139. https://link.aps.org/doi/10. 1103/PhysRevE.101.062139.
  • G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 2001.
  • C. Moslonka and K. Sekimoto, Martingale-induced local invariance in progressive quenching (2021). 2106.14821.
  • K. Sekimoto, Martingale drift of Langevin dynamics and classical canonical spin statistics, Phys. Rev. E 109 (2024) p. 014106. https://link.aps.org/doi/10. 1103/PhysRevE.109.014106.
  • M.I. Freidlin and A.D. Wentzell, Random Perturbations of Dynamical Systems, 3rd ed., Springer Berlin Heidelberg, Berlin, 2012.
  • C. Moslonka and K. Sekimoto, Interplay between Markovianity and progressive quenching, Preprint (2023). Available at arXiv, arXiv:2306.05831.
  • M. Kimura, The Neutral Theory of Molecular Evolution, Cambridge University Press, Cambridge, 1983.
  • M. Kimura, On the probability of fixation of mutant genes in a population, Genetics 47 (1962) p. 713.
  • J.H. Gillespie, Population Genetics: A Concise Guide, JHU Press, Baltimore, 2004.
  • T. Shiga and K. Uchiyama, Stationary states and their stability of the stepping stone model involving mutation and selection, Theory and Related Fields¡/DIFdel¿Probab. Theory. Relat. Fields. 73 (1986) pp. 87–117.
  • C.R. Doering, C. Mueller and P. Smereka, Interacting particles, the stochastic Fisher–Kolmogorov–Petrovsky–Piscounov equation, and duality, Phys. A: Stat. Mech. Appl. 325 (2003) pp. 243–259.
  • S. Pigolotti, R. Benzi, P. Perlekar, M. Jensen, F. Toschi and D.R. Nelson, Growth, competition and cooperation in spatial population genetics, Theor. Popul. Biol. 84 (2013) pp. 72–86.
  • J.C. Hull, Options Futures and Other Derivatives, Pearson Education India, Noida Uttar Pradesh, 2003.
  • P. Wilmott, Paul Wilmott on Quantitative Finance, John Wiley & Sons, Hoboken, 2013.
  • H.E. Stanley and R.N. Mantegna, An Introduction to Econophysics, Cambridge University Press, Cambridge, Cambridge, 2000.
  • J.-P. Bouchaud and M. Potters, Theory of Financial Risks, Cambridge from Statistical Physics to Risk …, Vol. 4, Cambridge University Press, 2000).
  • G.L. Vasconcelos, A guided walk down wall street: an introduction to econophysics, Braz. J. Phys. 34 (2004) pp. 1039–1065.
  • S.E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Vol. 11, Springer Science & Business Media, Berlin, 2004.
  • A.N. Shiryaev, Essentials of Stochastic Finance: Facts, Models, Theory, Vol. 3, World scientific, Singapore, 1999.
  • F. Black and M. Scholes, J. Polit. Econ. 81 (1973) p. 637. RC Merton, Bell J. Econ. Manag. Sci 4 (1973).
  • R.C. Merton, Theory of rational option pricing, Bell J. Econ. Manag. Sci. (1973) pp. 141–183. https://www.jstor.org/stable/3003143.
  • R.C. Dalang, A. Morton and W. Willinger, Equivalent martingale measures and no-arbitrage in stochastic securities market models, Stoch.: Int. J. Probab. Stoch. Process. 29 (1990) pp. 185–201.
  • T.H. Rydberg, Realistic statistical modelling of financial data, Int. Stat. Rev. 68 (2000) pp. 233–258.
  • A. Wald, Sequential tests of statistical hypotheses, Ann. Math. Stat. 16 (1945) pp. 117–186.
  • A. Wald and J. Wolfowitz, Optimum character of the sequential probability ratio test, Ann. Math. Stat. (1948) pp. 326–339. https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-19/issue-3/Optimum-Character-of-the-Sequential-Probability-Ratio-Test/10. 1214/aoms/1177730197.full.
  • M. Dorpinghaus, I. Neri, E. Roldán and F. Julicher, Optimal information usage in binary sequential hypothesis testing, Theory Probab. Appl. 68 (2023) pp. 77–87.
  • M. Dörpinghaus, I. Neri, É. Roldán, H. Meyr and F. Jülicher, Testing optimality of sequential decision-making, preprint (2018). Available at arXiv, arXiv:1801.01574.
  • H.M. Wiseman and G.J. Milburn, Quantum Measurement and Control, Cambridge University Press, Cambridge, 2009.
  • S.L. Adler, D. Brody, T. Brun and L. Hughston, Martingale models for quantum state reduction, J. Phys. A: Math. General 34 (2001) p. 8795.
  • M. Bauer and D. Bernard, Convergence of repeated quantum nondemolition measurements and wave-function collapse, Phys. Rev. A. 84 (2011) p. 044103.
  • D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett. 35 (1975) p. 1792.
  • M. Mézard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasoro, Nature of the spin-glass phase, Phys. Rev. Lett. 52 (1984) p. 1156.
  • F. Concetti, The full replica symmetry breaking in the ising spin glass on random regular graph, J. Stat. Phys. 173 (2018) pp. 1459–1483.
  • G. Parisi, The marginally stable Bethe lattice spin glass revisited, J. Stat. Phys. 167 (2017) pp. 515–542.
  • M. Bauer and D. Bernard, Conformal field theories of stochastic Loewner evolutions, Commun. Math. Phys. 239 (2003) pp. 493–521.
  • H. Spohn, Large Scale Dynamics of Interacting Particles, Springer Science & Business Media, Berlin, 2012.
  • A. De Masi, P.A. Ferrari and J.L. Lebowitz, Reaction–diffusion equations for interacting particle systems, J. Stat. Phys. 44 (1986) pp. 589–644.
  • P.A. Ferrari, E. Presutti and M.E. Vares, Non equilibrium fluctuations for a zero range process, Ann. l'IHP Probab. Stat. 24 (1988) pp. 237–268.
  • C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, Vol. 320, Springer Science & Business Media, Berlin, 1998.
  • M. Ribezzi-Crivellari, Marco and F. Ritort, Nature Phys. 15 (7), 660 (2019).
  • E.D. Siggia and M. Vergassola, Decisions on the fly in cellular sensory systems, Proc. Nat. Acad. Sci. 110 (2013) pp. E3704–E3712.
  • J. Desponds, M. Vergassola and A.M. Walczak, A mechanism for hunchback promoters to readout morphogenetic positional information in less than a minute, Elife 9 (2020) p. e49758.
  • J.I. Gold and M.N. Shadlen, Neural computations that underlie decisions about sensory stimuli, Trends. Cogn. Sci. (Regul. Ed.) 5 (2001) pp. 10–16.
  • S. Kira, T. Yang and M.N. Shadlen, A neural implementation of Wald's sequential probability ratio test, Neuron 85 (2015) pp. 861–873.
  • C.W. Lynn, E.J. Cornblath, L. Papadopoulos, M.A. Bertolero and D.S. Bassett, Broken detailed balance and entropy production in the human brain, PNAS 118 (2021) e2109889118.
  • A. Durmaz, Y. Sarmiento, G. Fortunato, D. Das, M.E. Diamond, D. Bueti and É. Roldán, Human perceptual decision making of nonequilibrium fluctuations. arXiv preprint arXiv:2311.12692 (2023).
  • C. Moore and S. Mertens, The Nature of Computation, OUP Oxford, Oxford, 2011.
  • R. Landauer, Irreversibility and heat generation in the computing process, IBM J. Res. Dev. 5 (1961) pp. 183–191.
  • C.H. Bennett, Logical reversibility of computation, IBM J. Res. Dev. 17 (1973) pp. 525–532.
  • D. Wolpert, J. Korbel, C. Lynn, F. Tasnim, J. Grochow, G. Kardes, J. Aimone, V. Balasubramanian, E. de Giuli, D. Doty, N. Freitas, M. Marsili, T.E. Ouldridge, A. Richa, P. Riechers, É. Roldán, B. Rubenstein, Z. Toroczkai and J. Paradiso, Is stochastic thermodynamics the key to understanding the energy costs of computation?, preprint (2023). Available at arXiv, arXiv:2311.17166.
  • S. Hottovy, G. Volpe and J. Wehr, Noise-induced drift in stochastic differential equations with arbitrary friction and diffusion in the Smoluchowski–Kramers limit, J. Stat. Phys. 146 (2012) pp. 762–773.
  • P. Lançon, G. Batrouni, L. Lobry and N. Ostrowsky, Drift without flux: Brownian walker with a space-dependent diffusion coefficient, Europhys. Lett. 54 (2001) p. 28.
  • G. Volpe, L. Helden, T. Brettschneider, J. Wehr and C. Bechinger, Influence of noise on force measurements, Phys. Rev. Lett. 104 (2010) p. 170602.
  • E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Stat. 36 (1965) pp. 1560–1564.
  • R. Stratonovich, A new representation for stochastic integrals and equations, SIAM J. Control 4 (1966) pp. 362–371.
  • N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Elsevier, Amsterdam, 2014.
  • O. Knill, Probability and stochastic processes with applications, Havard Web-Based 5 (1994). https://people.math.harvard.edu/∼knill/books/KnillProbability.pdf.
  • K. Jacobs, Stochastic Processes for Physicists: Understanding Noisy Systems, Cambridge University Press, Cambridge, 2010.
  • S. Ken-Iti, Lévy Processes and Infinitely Divisible Distributions, Vol. 68, Cambridge university press, Cambridge, 1999.
  • F. Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer Science & Business Media, Berlin, 2008.
  • M. Esposito, U. Harbola and S. Mukamel, Fluctuation theorem for counting statistics in electron transport through quantum junctions, Phys. Rev. B. 75 (2007) p. 155316.
  • Y. Murashita, K. Funo and M. Ueda, Nonequilibrium equalities in absolutely irreversible processes, Phys. Rev. E. 90 (2014) p. 042110.
  • G. Manzano, G. Kardeş, É. Roldán and D. Wolpert, Thermodynamics of computations with absolute irreversibility, unidirectional transitions, and stochastic computation times. arXiv preprint arXiv:2307.05713 (2023), Phys Rev. X in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.