274
Views
7
CrossRef citations to date
0
Altmetric
NOTE

Numerical Integration of Temperature-Dependent Functions in Bioenergetics Models to Avoid Overestimation of Fish Growth

&
Pages 334-347 | Received 11 Feb 2015, Accepted 08 Sep 2015, Published online: 07 Mar 2016

REFERENCES

  • Ainsworth, C., H. Morzaria-Luna, I. C. Kaplan, P. Levin, and E. Fulton. 2011. Full compliance with harvest regulations yields ecological benefits: northern Gulf of California case study. Journal of Applied Ecology 49:63–72.
  • Benkwitt, C. E., R. D. Brodeur, T. P. Hurst, and E. A. Daly. 2009. Diel feeding chronology, gastric evacuation, and daily food consumption of juvenile Chinook Salmon in Oregon coastal waters. Transactions of the American Fisheries Society 138:111–120.
  • Berg, O. K., B. Finstad, G. Grande, and E. Wathne. 1990. Growth of Atlantic Salmon (Salmo salar L.) in variable diel temperature regime. Aquaculture 90:261–266.
  • Bevelhimer, M. S., and S. M. Adams. 1993. A bioenergetics analysis of diel vertical migration by kokanee salmon, Oncorhynchus nerka. Canadian Journal of Fisheries and Aquatic Sciences 50:2336–2349.
  • Beverton, R., and S. Holt. 1957. On the dynamics of exploited fish populations. Chapman and Hall, Fish and Fisheries Series 11, London.
  • Chipps, S. R., and D. H. Wahl. 2008. Bioenergetics modeling in the 21st century: reviewing new insights and revisiting old constraints. Transactions of the American Fisheries Society 137:298–313.
  • Ciannelli, L., R. D. Brodeur, and T. W. Buckley. 1998. Development and application of a bioenergetics model for juvenile Walleye Pollock. Journal of Fish Biology 52:879–898.
  • Coulter, D. P., M. S. Sepulveda, C. D. Troy, and T. O. Hook. 2014. Thermal habitat quality of aquatic organisms near power plant discharges: potential exacerbating effects of climate warming. Fisheries Management and Ecology 21:196–210.
  • Cox, D. K., and C. C. Coutant. 1981. Growth dynamics of juvenile Striped Bass as functions of temperature and ration. Transactions of the American Fisheries Society 110:226–238.
  • David, A. T., C. S. Ellings, I. Woo, C. A. Simenstad, J. Y. Takekawa, K. L. Turner, A. L. Smith, and J. E. Takekawa. 2014. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta. Transactions of the American Fisheries Society 143:1515–1529.
  • Elliott, J., and L. Persson. 1978. The estimation of daily rates of food consumption for fish. Journal of Animal Ecology 47:977–991
  • Elliott, J. M., and W. Davison. 1975. Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201.
  • Fulton, E. A., J. S. Parslow, A. D. M. Smith, and C. R. Johnson. 2004a. Biogeochemical marine ecosystem models II: the effect of physiological detail on model performance. Ecological Modelling 173:371–406.
  • Fulton, E. A., A. D. M. Smith, and C. R. Johnson. 2004b. Biogeochemical marine ecosystem models I: IGBEM, a model of marine bay ecosystems. Ecological Modelling 174:267–307.
  • Geist, D. R., Z. Deng, R. P. Mueller, S. R. Brink, and J. A. Chandler. 2010. Survival and growth of juvenile Snake River fall Chinook Salmon exposed to constant and fluctuating temperatures. Transactions of the American Fisheries Society 139:92–107.
  • Hanson, P. C., T. B. Johnson, D. E. Schindler, and J. F. Kitchell. 1997. Fish bioenergetics model 3.0. University of Wisconsin Sea Grant Institute, Center for Limnology, Report WIS-CU-T-97-001, Madison.
  • Hartman, K. J., and J. F. Kitchell. 2008. Bioenergetics modeling: progress since the 1992 symposium. Transactions of the American Fisheries Society 137:216–223.
  • Hewett, S., and B. Johnson. 1992. Fish bioenergetics model 2, an upgrade of “a generalized bioenergetics model of fish growth for microcomputers.” University of Wisconsin Sea Grant Institute, Technical Report WIS-SG-92-250, Madison.
  • Hokanson, K. E. F., C. F. Kleiner, and T. W. Thorslund. 1977. Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile Rainbow Trout, Salmo gairdneri. Journal of the Fisheries Research Board of Canada 34:639–648.
  • Hollowed, A. B., N. A. Bond, T. K. Wilderbuer, W. T. Stockhausen, Z. T. A'Mar, R. J. Beamish, J. E. Overland, and M. J. Schirripa. 2009. A framework for modelling fish and shellfish responses to future climate change. ICES Journal of Marine Science 66:1584–1594.
  • Holsman, K. K., and K. Aydin. 2015. Comparative methods for evaluating climate change impacts on the foraging ecology of Alaskan groundfish. Marine Ecology Progress Series 521:217–235.
  • Holsman, K. K., M. D. Scheuerell, E. R. Buhle, and R. Emmett. 2012. Interacting effects of translocation, artificial propagation, and environmental conditions on the marine survival of Chinook Salmon from the Columbia River, Washington, USA. Conservation Biology 26:912–922.
  • Imholt, C., I. A. Malcolm, P. J. Bacon, C. N. Gibbins, C. Soulsby, M. Miles, and R. J. Fryer. 2011. Does diurnal temperature variability affect growth in juvenile Atlantic Salmon Salmo salar? Journal of Fish Biology 78:436–448.
  • Jobling, M. 1997. Temperature and growth: modulation of growth rate via temperature change. Society for Experimental Biology Seminar Series 61: 225–253.
  • Kaplan, I. C., P. J. Horne, and P. S. Levin. 2012. Screening California Current fishery management scenarios using the Atlantis end-to-end ecosystem model. Progress in Oceanography 102:5–18.
  • Kitchell, J., D. Stewart, and D. Weininger. 1977. Applications of a bioenergetics model to Yellow Perch (Perca flavescens) and Walleye (Stizostedion vitreum vitreum). Journal of the Fisheries Research Board of Canada 34:1922–1935.
  • Kristiansen, T., R. G. Lough, F. E. Werner, E. A. Broughton, and L. J. Buckley. 2009. Individual-based modeling of feeding ecology and prey selection of larval cod on Georges Bank. Marine Ecology Progress Series 376:227–243.
  • Martin, T. L., and R. B. Huey. 2008. Why “suboptimal” is optimal: Jensen's inequality and ectotherm thermal preferences. American Naturalist [online serial] 171:E102–E118.
  • McCullough, D. A., J. M. Bartholow, H. I. Jager, R. L. Beschta, E. F. Cheslak, M. L. Deas, J. L. Ebersole, J. S. Foott, S. L. Johnson, K. R. Marine, M. G. Mesa, J. H. Petersen, Y. Souchon, and K. F. Tiffan. 2009. Research in thermal biology: burning questions for coldwater stream fishes. Reviews in Fisheries Science 17:90–115.
  • Meeuwig, M. M., J. B. Dunham, J. P. Hayes, and G. L. Vinyard. 2004. Effects of constant and cyclical thermal regimes on growth and feeding of juvenile Cutthroat Trout of variable sizes. Ecology of Freshwater Fish 13:208–216.
  • Ney, J. J. 1993. Bioenergetics modeling today: growing pains on the cutting edge. Transactions of the American Fisheries Society 122:736–748.
  • Nislow, K. H., C. L. Folt, and D. L. Parrish. 2000. Spatially explicit bioenergetic analysis of habitat quality for age-0 Atlantic Salmon. Transactions of the American Fisheries Society 129:1067–1081.
  • Pike, A., E. Danner, D. Boughton, F. Melton, R. Nemani, B. Rajagopalan, and S. Lindley. 2013. Forecasting river temperatures in real time using a stochastic dynamics approach. Water Resources Research 49:5168–5182.
  • Plumb, J. M., and C. M. Moffitt. 2015. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook Salmon. Transactions of the American Fisheries Society 44:323–330.
  • Ruel, J. J., and M. P. Ayers. 1999. Jensen's inequality predicts effects of environmental variation. Trends in Ecology and Evolution 14:361–366.
  • Scheuerell, M. D., R. W. Zabel, and B. P. Sandford. 2009. Relating juvenile migration timing and survival to adulthood in two species of threatened Pacific salmon (Oncorhynchus spp.). Journal of Applied Ecology 46:983–990.
  • Smallwood, P. D. 1996. An introduction to risk sensitivity: the use of Jensen's inequality to clarify evolutionary arguments of adaptation and constraint. American Zoologist 36:392–317.
  • Steel, E. A., A. Tillotson, D. A. Larsen, A. H. Fullerton, K. P. Denton, and B. R. Beckman. 2012. Beyond the mean: the role of variability in predicting ecological effects of stream temperature on salmon. Ecosphere [online serial] 3(11):article 104.
  • Steinhausen, M. F., E. Sandblom, E. J. Eliason, C. Verhille, and A. P. Farrell. 2008. The effect of acute temperature increases on the cardiorespiratory performance of resting and swimming Sockeye Salmon (Oncorhynchus nerka). Journal of Experimental Biology 211:3915–3926.
  • Stewart, D., D. Weininger, D. Rottiers, and T. Edsall. 1983. An energetics model for Lake Trout, Salvelinus namaycush: application to the Lake Michigan population. Canadian Journal of Fisheries and Aquatic Sciences 40:681–698.
  • Stewart, D. J., and M. Ibarra. 1991. Predation and production by salmonine fishes in Lake Michigan, 1978–88. Canadian Journal of Fisheries and Aquatic Sciences 48:909–922.
  • Uphoff, C. S., C. W. Schoenebeck, W. W. Hoback, K. D. Koupal, and K. L. Pope. 2013. Degree-day accumulation influences annual variability in growth of age-0 Walleye. Fisheries Research 147:394–398.
  • Weber, N., N. Bouwes, and C. E. Jordan. 2014. Estimation of salmonid habitat growth potential through measurements of invertebrate food abundance and temperature. Canadian Journal of Fisheries and Aquatic Sciences 71:1158–1170.
  • Wood, C. M., and D. G. McDonald. 1997. Global warming: implications for freshwater and marine fish. Cambridge University Press, Cambridge, UK.
  • Woodson, L. E., B. K. Wells, P. K. Weber, R. B. Macfarlane, G. E. Whitman, and R. C. Johnson. 2013. Size, growth, and origin-dependent mortality of juvenile Chinook Salmon Oncorhynchus tshawytscha during early ocean residence. Marine Ecology Progress Series 487:163–175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.