513
Views
0
CrossRef citations to date
0
Altmetric
Data Science

Hidden Markov Models for Low-Frequency Earthquake Recurrence

ORCID Icon & ORCID Icon
Pages 100-110 | Received 17 Jan 2023, Accepted 08 Nov 2023, Published online: 21 Dec 2023

References

  • Bacci, S., Pandolfi, S., and Pennoni, F. (2014), “A Comparison of Some Criteria for States Selection in the Latent Markov Model for Longitudinal Data,” Advances in Data Analysis and Classification, 8, 125–145. DOI: 10.1007/s11634-013-0154-2.
  • Bebbington, M., and Harte, D. (2003), “The Linked Stress Release Model for Spatio-Temporal Seismicity: Formulations, Procedures and Applications,” Geophysical Journal International, 154, 925–946. DOI: 10.1046/j.1365-246X.2003.02015.x.
  • Bebbington, M. S. (2007), “Identifying Volcanic Regimes Using Hidden Markov Models,” Geophysical Journal International, 171, 921–942. DOI: 10.1111/j.1365-246X.2007.03559.x.
  • Bhaduri, M. (2020), “On Modifications to the Poisson-Triggered Hidden Markov Paradigm through Partitioned Empirical Recurrence Rates Ratios and its Applications to Natural Hazards Monitoring,” Scientific Reports, 10, 1–19. DOI: 10.1038/s41598-020-72803-z.
  • Borchers, D. L., and Langrock, R. (2015), “Double-Observer Line Transect Surveys with Markov-Modulated Poisson Process Models for Animal Availability,” Biometrics, 71, 1060–1069. DOI: 10.1111/biom.12341.
  • Bray, A., and Schoenberg, F. P. (2013), “Assessment of Point Process Models for Earthquake Forecasting,” Statistical Science, 28, 510–520. DOI: 10.1214/13-STS440.
  • Buckby, J., Wang, T., Zhuang, J., and Obara, K. (2020), “Model Checking for Hidden Markov Models,” Journal of Computational and Graphical Statistics, (4), 859–874. DOI: 10.1080/10618600.2020.1743295.
  • Buckby, J. J. (2020), “Model Selection and Model Checking for Hidden Markov Models Applied to Non-Volcanic Tremor Data,” Master’s Thesis, University of Otago. Available at http://hdl.handle.net/10523/10382.
  • Costa, M., and De Angelis, L. D. (2010), “Model Selection in Hidden Markov Models: A Simulation Study,” in No 7, Quaderni di Dipartimento. Department of Statistics, University of Bologna.
  • Escola, S., Fontanini, A., Katz, D., and Paninski, L. (2011), “Hidden Markov Models for the Stimulus-Response Relationships of Multistate Neural Systems,” Neural Computation, 23, 1071–1132. DOI: 10.1162/NECO_a_00118.
  • Hannan, E. J., and Quinn, B. G. (1979), “The Determination of the Order of An Autoregression,” Journal of the Royal Statistical Society, 41, 190–195. DOI: 10.1111/j.2517-6161.1979.tb01072.x.
  • Ho, C.-H., and Bhaduri, M. (2015), “On a Novel Approach to Forecast Sparse Rare Events: Applications to Parkfield Earthquake Prediction,” Natural Hazards, 78, 1–27. DOI: 10.1007/s11069-015-1739-1.
  • Holzmann, H., and Schwaiger, F. (2016), “Testing for the Number of States in Hidden Markov Models,” Computational Statistics and Data Analysis, 100, 318–330. DOI: 10.1016/j.csda.2014.06.012.
  • Ignatieva, A., Bell, A. F., and Worton, B. J. (2018), “Point Process Models for Quasi-Periodic Volcanic Earthquakes,” Statistics in Volcanology, 4, 1–27. arXiv:1803.07688v2. DOI: 10.5038/2163-338X.4.2.
  • Kahle, D., and Wickham, H. (2013), “ggmap: Spatial Visualization with ggplot2,” The R Journal, 5, 144–161. Available at https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf. DOI: 10.32614/RJ-2013-014.
  • Lu, S. (2012), “Markov Modulated Poisson Process Associated with State-Dependent Marks and its Applications to the Deep Earthquakes,” Annals of the Institute of Statistical Mathematics, 64, 87–106. DOI: 10.1007/s10463-010-0302-9.
  • Massey, F. J. (1951), “The Kolmogorov-Smirnov Test for Goodness of Fit,” Journal of the American Statistical Association, 46, 68–78. DOI: 10.2307/2280095.
  • McClintock, B. T., Langrock, R., Gimenez, O., Cam, E., Borchers, D. L., Glennie, R., and Patterson, T. A. (2020), “Uncovering Ecological State Dynamics with Hidden Markov Models,” Ecology Letter, 23, 1878–1903. DOI: 10.1111/ele.13610.
  • Michel, S., Jolivet, R., Lengliné, O., Gualandi, A., Larochelle, S., and Gardonio, B. (2022), “Searching for Transient Slow Slips Along the San Andreas Fault Near Parkfield Using Independent Component Analysis,” Journal of Geophysical Research: Solid Earth, 127, e2021JB023201. DOI: 10.1029/2021JB023201.
  • Obara, K. (2011), “Characteristics and Interactions between Non-volcanic Tremor and Related Slow Earthquakes in the Nankai Subduction Zone, Douthwest Japan,” Journal of Geodynamics, 52, 229–248. DOI: 10.1016/j.jog.2011.04.002.
  • Obara, K., and Kato, A. (2016), “Connecting Slow Earthquakes to Huge Earthquakes,” Science, 353, 253–257. DOI: 10.1126/science.aaf1512.
  • Ogata, Y. (1988), “Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes,” Journal of the American Statistical Association, 83, 9–27. DOI: 10.1080/01621459.1988.10478560.
  • Peterson, C., and Christensen, D. (2009), “Possible Relationship between Non-volcanic Tremor and the 1998-2001 Slow-Slip Events, South Central Alaska,” Journal of Geophsyical Research, 114, B06302. DOI: 10.1029/2008JB006096.
  • Pohle, J., Langrock, R., van Beest, F., and Schmidt, N. M. (2017), “Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions, Illustrated Using Animal Movement,” Journal of Agricultural, Biological and Environmental Statistics, 22, 270–293. DOI: 10.1007/s13253-017-0283-8.
  • R Core Team. (2020), R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. Available at https://www.R-project.org/.
  • Rogers, G., and Dragert, H. (2003), “Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip,” Science, 300, 1942–1943. DOI: 10.1126/science.1084783.
  • Rousset, B., Bürgmann, R., and Campillo, M. (2019), “Slow Slip Events in the Roots of the San Andreas Fault,” Science Advances, 5, eaav3274. DOI: 10.1126/sciadv.aav3274.
  • Shcherbakov, R., Zhuang, J., Zöller, G., and Ogata, Y. (2019), “Forecasting the Magnitude of the Largest Expected Earthquake,” Nature Communications, 10, 4051. DOI: 10.1038/s41467-019-11958-4.
  • Shelly, D. R. (2017), “A 15 Year Catalog of More than 1 Million Low-Frequency Earthquakes: Tracking Tremor and Slip Along the Deep San Andreas Fault,” Journal of Geophysical Research: Solid Earth, 122, 3739–3753. DOI: 10.1002/2017JB014047.
  • Shelly, D. R., and Hardebeck, J. L. (2010), “Precise Tremor Source Locations and Amplitude Variations Along the Lower-Crustal Central San Andreas Fault,” Geophysical Research Letters, 37, L14301. DOI: 10.1029/2010GL043672.
  • Shelly, D. R., and Johnson, M. K. (2011), “Tremor Reveals Stress Shadowing, Deep Postseismic Creep, and Depth-Dependent Slip Recurrence on the Lower-Crustal San Andreas Fault Near Parkfield,” Geophysical Research Letters, 38, L13312. DOI: 10.1029/2011GL047863.
  • Supino, M., Poiata, N., Festa, G., Vilotte, J. P., Satriano, C., and Obara, K. (2020), “Self-Similarity of Low-Frequency Earthquakes,” Scientific Reports, 10, 6523. DOI: 10.1038/s41598-020-63584-6.
  • Thomas, A. M., Beeler, N. M., Bletery, Q., Burgmann, R., and Shelly, D. R. (2018), “Using Low-Frequency Earthquake Families on the San Andreas Fault as Deep Creepmeters,” Journal of Geophysical Research: Solid Earth, 123, 457–475. DOI: 10.1002/2017JB014404.
  • Tokdar, S., Xi, P., Kelly, R. C., and Kass, R. E. (2009), “Detection of Bursts in Extracellular Spike Trains Using Hidden Semi-Markov Point Process Models,” Journal of computational neuroscience 29, 203–212. DOI: 10.1007/s10827-009-0182-2.
  • Ushey, K., Allaire, J., Wickham, H., and Ritchie, G. (2020), rstudioapi: Safely Access the RStudio API, available at https://github.com/rstudio/rstudioapi.
  • van der Elst, N. J., Delorey, A. A., Shelly, D. R., and Johnson, P. A. (2016), “Fortnightly Modulation of San Andreas Tremor and Low-Frequency Earthquakes,” Proceedings of the National Academy of Sciences of the United States of America, 113, 8601–8605. DOI: 10.1073/pnas.1524316113.
  • Veedu, D. M., and Barbot, S. (2016), “The Parkfield Tremors Reveal Slow and Fast Ruptures on the Same Asperity,” Nature, 532, 361–365. DOI: 10.1038/nature17190.
  • Viterbi, A. J. (1967), “Error Bounds for Convolutional Codes and An Asymptotically Optimum Decoding Algorithm,” IEEE Transactions on Information Theory, 13, 260–269. DOI: 10.1109/TIT.1967.1054010.
  • Wang, T., and Bebbington, M. (2012), “Estimating the Likelihood of an Eruption from a Volcano with Missing Onsets in its Record,” Journal of Volcanology and Geothermal Research, 243–244, 14–23. DOI: 10.1016/j.jvolgeores.2012.06.032.
  • Wang, T., Bebbington, M., and Harte, D. (2012), “Markov-Modulated Hawkes Process with Stepwise Decay,” Annals of the Institute of Statistical Mathematics, 64, 521–544. DOI: 10.1007/s10463-010-0320-7.
  • Wang, T., Zhuang, J., Buckby, J., Obara, K., and Tsuruoka, H. (2018), “Identifying the Recurrence Patterns of Non-volcanic Tremors Using a 2d Hidden Markov Model with Extra Zeros,” Journal of Geophysical Research: Solid Earth, 123, 6802–6825. DOI: 10.1029/2017JB015360.
  • Wang, T., Zhuang, J., Obara, K., and Tsuruoka, H. (2017), “Hidden Markov Modelling of Sparse Time Series from Non-volcanic Tremor Observations,” Journal of the Royal Statistical Society, Series C, 66, 691–715. DOI: 10.1111/rssc.12194.
  • Wang, Y., Wang, T., and Zhuang, J. (2018), “Modeling Continuous Time Series with Many Zeros and An Application to Earthquakes,” Environmetrics, 29, e2500. DOI: 10.1002/env.2500.
  • Wu, C., Guyer, R., Shelly, D., Trugman, D., Frank, W., Gomberg, J., and Johnson, P. (2015), “Spatial-Temporal Variation of Low-Frequency Earthquake Bursts Near Parkfield, California,” Geophysical Journal International, 202, 914–919. DOI: 10.1093/gji/ggv194.
  • Wu, C., Shelly, D. R., Gomberg, J., Peng, Z., and Johnson, P. (2013), “Long-term Changes of Earthquake Inter-Event Times and Low-Frequency Earthquake Recurrence in Central California,” Earth and Planetary Science Letters, 368, 144–150. DOI: 10.1016/j.epsl.2013.03.007.
  • Zucchini, W., and MacDonald, I. (2009), Hidden Markov Models for Time Series: An Introduction Using R, New York: Chapman and Hall/CRC.