252
Views
17
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Determination of Sudan I Using Electrochemically Reduced Graphene Oxide

, , , , &
Pages 923-935 | Received 10 Sep 2012, Accepted 31 Oct 2012, Published online: 20 Mar 2013

REFERENCES

  • Abraham , M. H. , M. Amin , and A. M. Zissimos . 2002 . The lipophilicity of Sudan I and its tautomeric forms . Phys. Chem. Chem. Physics. 4 : 5748 – 5752 .
  • Bai , J. , R. Cheng , F. Xiu , L. Liao , M. Wang , A. Shailos , K. L. Wang , Y. Huang , and X. Duan . 2010 . Very large magneto resistance in graphene nanoribbons . Nat. Nanotechnol. 5 : 655 – 659 .
  • Chen , L. Y. , Y. H. Tang , K. Wang , C. B. Liu , and S. L. Luo . 2011 . Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application . Electrochem. Commun. 13 : 133 – 137 .
  • Chen , T. W. , Z. H. Sheng , K. Wang , F. B. Wang , and X. H. Xia . 2011 . Determination of explosives using electrochemically reduced graphene . Chem. Asian J. 6 : 1210 – 1216 .
  • Du , M. , X. Han , Z. Zhou , and S. Wu . 2007 . Determination of Sudan I in hot chili powder by using an activated glassy carbon electrode . Food Chem. 105 : 883 – 888 .
  • Dua , V. , S. P. Surwade , S. Ammu , S. R. Agnihotra , S. Jain , K. E. Roberts , S. Park , R. S. Ruoff , and S. K. Manohar . 2010 . All-organic vapor sensor using inkjet-printed reduced graphene oxide . Angew. Chem. Int. Ed. 49 : 2154 – 2157 .
  • Ertas , E. , H. Özer , and C. Alasalvar . 2007 . A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper . Food Chem. 105 : 756 – 760 .
  • Gan , T. , K. Li , and K. Wu . 2008. Multi-wall carbon nanotube-based electrochemic sensor for sensitive determination of Sudan I. Sens. Actuators B 132: 134–139.
  • Gulbakan , B. , E. Yasun , M. I. Shukoor , Z. Zhu , M. You , X. Tan , H. Sanchez , D. H. Powell , H. Dai , and W. Tan . 2010 . A dual platform for selective analyte enrichment and ionization in mass spectrometry using aptamer-conjugated graphene oxide . J. Am. Chem. Soc. 132 : 17408 – 17410 .
  • Guo , H. L. , X. F. Wang , Q. Y. Qian , F. B. Wang , and X. H. Xia . 2009 . A green approach to synthesis of graphene sheets using electrochemical technique . ACS Nano 3 : 2653 – 2659 .
  • Guo , Y. L. , B. Wu , H. T. Liu , Y. Q. Ma , Y. Yang , J. Zheng , G. Yu , and Y. Q. Liu . 2009 . Electrical assembly and reduction of graphene oxide in a single solution step for use in flexible sensors . Adv. Mater. 23 : 4626 – 4630 .
  • He , L. , Y. Su , B. Fang , X. Shen , Z. Zeng , and Y. Liu . 2007 . Determination of Sudan dye residues in eggs by liquid chromatography and gas chromatography–mass spectrometry . Anal. Chim. Acta. 594 : 139 – 146 .
  • Hummers , W. S. , and J. R. E. Offeman . 1958 . Preparation of graphitic oxide . J. Am. Chem. Soc. 80 : 1339 – 1339 .
  • Laviron , E. 1979 . General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems . J. Electroanal. Chem. 101 : 19 – 28 .
  • Li , D. , M. B. Muller , S. Gilje , R. B. Kaner , and G. G. Wallace . 2011 . Processable aqueous dispersions of graphene nanosheets . Nat. Nanotechnol. 3 : 101 – 105 .
  • Lin , H. , G. Li , and K. Wu . 2008 . Electrochemical determination of Sudan I using montmorillonite calcium modified carbon paste electrode . Food Chem. 107 : 531 – 536 .
  • Liu , J. , H. Zhang , D. Zhang , F. Gao , and J. Wang . 2012 . Production of the monoclonal antibody against Sudan 2 for immunoassay of Sudan dyes in egg . Anal. Biochem. 423 : 246 – 252 .
  • Liu , Q. , Z. F. Liu , X. Y. Zhang , L. Y. Yang , N. Zhang , G. L. Pan , S. G. Yin , Y. S. Chen , and J. Wei . 2009 . Polymer photovoltaic cells based on solution processable graphene and P3HT . Adv. Funct. Mater. 19 : 894 – 904 .
  • Mejia , E. , Y. Ding , M. F. Mora , and C. D. Garcia . 2007 . Determination of banned Sudan dyes in chili powder by capillary electrophoresis . Food Chem. 102 : 1027 – 1033 .
  • Mo , Z. , Y. Zhang , F. Zhao , F. Xiao , G. Guo , and B. Zeng . 2010 . Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant–ionic liquid–multiwalled carbon nanotube composite film modified glassy carbon electrodes . Food Chem. 121 : 233 – 237 .
  • Nicholson , R. S. 1965 . Theory and application of measurement of electrode reaction kinetics . Anal. Chem. 37 : 1351 – 1355 .
  • Nohynek , G. J. , R. Fautz , F. Benech-Kieffer , and H. Toutain . 2004 . Toxicity and human health risk of hair dyes . Food Chem. Toxicol. 42 : 517 – 543 .
  • Ohno , Y. , K. Maehashi , and K. Matsumoto . 2010 . Label-free biosensors based on aptamer- modified graphene field-effect transistors . J. Am. Chem. Soc. 132 : 18012 – 18013 .
  • Pinheiro , H. M. , E. Touraud , and O. Thomas . 2004 . Aromatic amines from azo dyes reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters . Dyes Pigments 61 : 121 – 139 .
  • Ping , J. F. , Y. X. Wang , K. Fan , J. Wu , and Y. B. Ying . 2011 . Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application . Biosens. Bioelectron. 28 : 204 – 209 .
  • Schedin , F. , A. K. Geim , S. V. Morozov , E. W. Hill , P. Blake , M. I. Katsnelson , and K. S. Novoselov . 2007 . Detection of individual gas molecules adsorbed on graphene . Nat. Mater. 6 : 652 – 655 .
  • Stankovich , S. , D. A. Dikin , H. B. Geoffrey Dommett , K. M. Kohlhaas , E. J. Zimney , E. A. Stach , R. Piner , S. T. Nguyen , and R. S. Ruoff . 2006 . Graphene-based composite materials . Nature 442 : 282 – 286 .
  • Wu , Y. 2010. Electrocatalysis and sensitive determination of Sudan I at the single walled carbon nanotubes and iron (III)-porphyrin modified glassy carbon electrodes. Food Chem. 121: 580–584.
  • Yang , D. , L. Zhu , and X. Jiang . 2010 . Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode . J. Electroanal. Chem. 640 : 17 – 22 .
  • Yang , D. , L. Zhu , X. Jiang , and L. Guo . 2009 . Sensitive determination of Sudan I at an ordered mesoporous carbon modified glassy carbon electrode . Sens. Actuators B 141 : 124 – 129 .
  • Yin , H. , Y. Zhou , X. Meng , T. Tang , S. Ai , L., and S. Zhu . 2011 . Electrochemical behavior of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples . Food Chem. 127 : 1348 – 1353 .
  • Zhang , L. M. , S. Diao , Y. F. Nie , K. Yan , N. Liu , B. Y. Dai , Q. Xie , A. Reina , J. Kong , and Z. F. Liu . 2011 . Photocatalytic patterning and modification of graphene . J. Am. Chem. Soc. 133 : 2706 – 2713 .
  • Zhao , F. , F. Wang , W. Zhao , J. Zhou , Y. Liu , L. Zou , and B. Ye . 2011 . Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide . Microchim. Acta. 174 : 383 – 390 .
  • Zhou , M. , Y. L. Wang , Y. M. Zhai , J. F. Zhai , W. Ren , F. Wang , and S. J. Dong . 2009 . Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films . Chem. Eur. J. 15 : 6116 – 6120 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.