354
Views
15
CrossRef citations to date
0
Altmetric
SENSORS

Full-Layer Controlled Synthesis and Transfer of Large-Scale Monolayer Graphene for Nitrogen Dioxide and Ammonia Sensing

, , , , &
Pages 280-294 | Received 04 Jun 2013, Accepted 22 Jul 2013, Published online: 31 Dec 2013

REFERENCES

  • Bae , S. , H. Kim , Y. Lee , X. Xu , J. S. Park , Y. Zheng , et al. . 2010 . Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes . Nat. Nanotech. 5 : 574 – 578 .
  • Bradley , K. , J. C. Gabriel , M. Briman , A. Star , and G. Grüner . 2003. Charge transfer from ammonia physisorbed on nanotubes. Phys. Rev. Lett. 91: 218301.
  • Chen , G. , T. M. Paronyan , and A. R. Harutyunyan . 2012 . Sub-PPT gas detection with pristine graphene . Appl. Phys. Lett. 101 : 053119 .
  • Chung , M. G. , D. H. Kim , H. M. Lee , T. Kim , J. H. Choi , D. K. Seo , J. B. Yoo , S. H. Hong , T. J. Kang , and Y. H. Kim . 2012 . Highly sensitive NO2 gas sensor based on ozone treated graphene . Sens. Actuators B 166–167 : 172 – 176 .
  • Duong , D. L. , G. H. Han , S. M. Lee , F. Gunes , E. S. Kim , S. T. Kim , et al. . 2012 . Probing Graphene grain boundaries with optical microscopy . Nature 490 : 235 – 239 .
  • Eda , G. , G. Fanchini , and M. Chhowalla . 2008 . Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material . Nat. Nanotech. 3 : 270 – 274 .
  • Ferrari , A. C. , J. C. Meyer , V. Scardaci , C. Casiraghi , M. Lazzeri , F. Mauri , et al. . 2006 . Raman spectrum of graphene and graphene layers . Phys. Rev. Lett. 97 : 187401 .
  • Gautam , M. , and A. H. Jayatissa . 2012 . Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles . Solid-State Elect. 78 : 159 – 165 .
  • Ghosh , A. , D. J. Late , L. S. Panchakarla , A. Govindaraj , and C. N. R. Rao . 2009 . NO2 and Humidity Sensing Characteristics of Few-layer Graphenes . J. Exp. Nanosci. 4 : 313 – 322 .
  • Joshi , R. K. , H. Gomez , F. Alvi , and A. Kumar . 2010 . Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions . J. Phys. Chem. C 114 : 6610 – 6613 .
  • Khai , T. V. , P. Maneeratanasarn , and S. Kwang-Bo . 2012 . NO 2 gas sensing based on graphene synthesized via chemical reduction process of exfoliated graphene oxide . J. Kor. Cryst. Grow. Cryst. Technol. 22 : 84 – 91 .
  • Ko , G. , H. Y. Kim , J. Ahn , Y. M. Park , K. Y. Lee , and J. Kim . 2010 . Graphene-based nitrogen dioxide gas sensors . Curr. Appl. Phys. 10 : 1002 – 1004 .
  • Korotcenkov , G. , and B. K. Cho . 2011 . Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey) . Sens. Actuators B 156 : 527 – 538 .
  • Lee , Y. , S. Bae , H. Jang , S. Jang , S. E. Zhu , S. H. Sim , Y. I. Song , B. H. Hong , and J. H. Ahn . 2010 . Wafer-scale synthesis and transfer of graphene films . Nano Lett. 10 : 490 – 493 .
  • Leenaerts , O. , B. Partoens , and F. Peeters . 2008 . Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study . Mater. Sci. Phys. Rev. B 77 : 125416 .
  • Leenaerts , O. , B. Partoens , and F. M. Peeters . 2009 . Adsorption of small molecules on graphene . Microelec. J. 40 : 860 – 862 .
  • Li , X. , W. Cai , J. An , S. Kim , J. Nah , D. Yang , et al. . 2009 . Large-area synthesis of high-quality and uniform graphene films on copper foils . Science 324 : 1312 – 1314 .
  • Li , X. , W. Cai , L. Colombo , and R. S. Ruoff . 2009 . Evolution of graphene growth on Ni and Cu by carbon isotope labeling . Nano Lett. 9 : 4268 – 4272 .
  • Li , X. , C. W. Magnuson , A. Venugopal , R. M. Tromp , J. B. Hannon , E. M. Vogel , L. Colombo , and R. S. Ruoff . 2011 . Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper . J. Am. Chem. Soc. 133 : 2816 – 2819 .
  • Malard , L. M. , M. A. Pimenta , G. Dresselhaus , and M. S. Dresselhaus . 2009 . Raman spectroscopy in graphene . Phys. Rep. 473 : 51 – 87 .
  • Mattevi , C. , M. Chhowalla , and H. Kim . 2011 . A review of chemical vapour deposition of graphene on copper . J. Mater. Chem. 21 : 3324 .
  • Meric , I. , M. Y. Han , A. F. Young , B. Ozyilmaz , P. Kim , and K. L. Shepard . 2008 . Current Saturation in Zero-bandgap, Top-gated Graphene Field-effect Transistors . Nat. Nanotech 3 : 654 – 659 .
  • Nang , L. V. , and E. T. Kim . 2012 . Controllable synthesis of high-quality graphene using inductively-coupled plasma chemical vapor deposition . J. Electrochem. Soc. 159 : K93 .
  • Nomani , M. W. K. , R. Shishir , M. Qazi , D. Diwan , V. B. Shields , M. G. Spencer , G. S. Tompa , N. M. Sbrockey , and G. Koley . 2010 . Highly sensitive and selective detection of NO2 using epitaxial graphene on 6H-SiC . Sens. Actuators B 150 : 301 – 307 .
  • Novoselov , K. S. , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , and A. A Firsov . 2004. Electric field effect in atomically thin carbon films. Science 306: 666–669.
  • Peierls , R. E. 1935 . Quelques proprietes typiques des corpses solides . Ann. I. H. Poincare 5 : 177 – 222 .
  • Schedin , F. , A. K. Geim , S. V. Morozov , E. W. Hill , P. Blake , M. I. Katsnelson , and K. S. Novoselov . 2007 . Detection of individual gas molecules adsorbed on graphene . Nat. Mater. 6 : 652 – 655 .
  • Schwierz , F. 2010 . Graphene transistors . Nat. Nanotech. 5 : 487 – 496 .
  • Singh , A. K. , M. A. Uddin , J. T. Tolson , H. Maire-Afeli , N. Sbrockey , G. S. Tompa , M. G. Spencer , T. Vogt , T. S. Sudarshan , and G. Koley . 2013 . Electrically tunable molecular doping of graphene . Appl. Phys. Lett. 102 : 043101 .
  • Sire , C. , F. Ardiaca , S. Lepilliet , J. W. T. Seo , M. C. Hersam , G. Dambrine , H. Happy , and V. Derycke . 2012 . Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12 : 1184 – 1188 .
  • Song , P. , X. Zhang , M. Sun , X. Cui , and Y. Lin . 2012 . Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide . RSC Adv. 2 : 1168 .
  • Sutter , P. 2009 . Epitaxial graphene: How silicon leaves the scene . Nat. Mater. 8 : 171 – 172 .
  • Tan , Y. W. , Y. Zhang , H. L. Stormer , and P. Kim . 2007 . Temperature dependent electron transport in graphene . Eur. Phys. J. Special Topics 148 : 15 – 18 .
  • Thiele , S. , A. Reina , P. Healey , J. Kedzierski , P. Wyatt , P. L. Hsu , C. Keast , J. Schaefer , and J. Kong . 2010 . Engineering polycrystalline ni films to improve thickness uniformity of the chemical-vapor-deposition-grown graphene films . Nanotechnology 21 : 015601 .
  • Thong , L. V. , L. T. N. Loan , and N. V. Hieu . 2010 . Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures . Sens. Actuators B 150 : 112 – 119 .
  • Wang , Y. , S. W. Tong , X. F. Xu , B. Ozyilmaz , and K. P. Loh . 2011 . Interface Engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells . Adv. Mater. (Deerfield Beach, Fla.) 23 : 1514 – 1518 .
  • Wei , D. , and Y. Liu . 2010 . Controllable Synthesis of graphene and its applications . Adv. Mater. (Deerfield Beach, Fla.) 22 : 3225 – 3241 .
  • Yan , C. , J. H. Cho , and J. H. Ahn . 2012 . Graphene-based flexible and stretchable thin film transistors. Nanoscale 4 : 4870 – 4882 .
  • Yavari , F. , E. Castillo , H. Gullapalli , P. M. Ajayan , and N. Koratkar . 2012 . High sensitivity detection of no2 and nh3 in air using chemical vapor deposition grown graphene . Appl. Phys. Lett. 100 : 203120 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.