237
Views
6
CrossRef citations to date
0
Altmetric
BIOSENSORS

Comparison of Cobalt Hexacyanoferrate and Poly(Neutral Red) Modified Carbon Film Electrodes for the Amperometric Detection of Heavy Metals Based on Glucose Oxidase Enzyme Inhibition

, , &
Pages 659-671 | Received 18 Jun 2014, Accepted 31 Jul 2014, Published online: 25 Sep 2014

REFERENCES

  • Amine, A., L. El Harrad, F. Arduini, D. Moscone, and G. Palleschi. 2014. Analytical aspects of enzyme reversible inhibition. Talanta. 118: 368–374.
  • Amine, A., H. Mohammadi, L. Bourais, and G. Palleschi. 2006. Enzyme inhibition-based biosensors for food safety and environmental monitoring. Biosens. Bioelectron. 21: 1405–1423.
  • Arduini, F., and A. Amine. 2014. Biosensors based on enzyme inhibition. Adv. Biochem Eng. Biotechnol. 140: 299–326.
  • Bagal-Kestwal, D., M. S. Karve, B. Kakade, and V. K. Pillai. 2008. Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity. Biosens. Bioelectron. 24: 657–664.
  • Brett, C. M. A., L. Angnes, and H.-D. Liess. 2001. Carbon film resistors as electrodes: voltammetric properties and application in electroanalysis. Electroanalysis. 13: 765–769.
  • Cass, A. E. G., G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L. Scott, and A. P. F. Turner. 1984. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 56: 667–671.
  • Chen, C., Q. Xie, L. Wang, C. Qin, F. Xie, S. Yao, and J. Chen. 2011. Experimental platform to study heavy metal ion-enzyme interactions and amperometric inhibitive assay of Ag+ based on solution state and immobilized glucose oxidase. Anal. Chem. 83: 2660–2666.
  • Choi, O., B.-C. Kim, J.-H. An, K. Min, Y. H. Kim, Y. Um, M.-K. Oh, and B.-I. Sang. 2011. A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme. Enzyme Microb. Technol. 49: 441–445.
  • Crespilho, F. N., M. E. Ghica, M. Florescu, F. C. Nart, O. N. Oliveira Jr., and C. M. A. Brett. 2006. A strategy for enzyme immobilization on layer-by-layer dendrimer-gold nanoparticle electrocatalytic membrane incorporating redox mediator. Electrochem. Commun. 8: 1665–1670.
  • Dixon, M. 1953. The determination of enzyme inhibitor constants. Biochem. J. 55: 170–171.
  • Filipe, O. M. S., and C. M. A. Brett. 2004. Characterization of carbon film electrodes for electroanalysis by electrochemical impedance. Electroanalysis. 16: 994–1001.
  • Florescu, M., and C. M. A. Brett. 2004. Development and characterization of cobalt hexacyanoferrate modified carbon electrodes for electrochemical enzyme biosensors. Anal. Lett. 37: 871–886.
  • Gammoudi, I., H. Tarbague, A. Othmane. D. Moynet, D. Rebiere, R. Kalfat, and C. Dejous. 2010. Love-wave bacteria-based sensor for the detection of heavy metal toxicity in liquid medium. Biosens. Bioelectron. 26: 1723–1726.
  • Ghica, M. E., and C. M. A. Brett. 2006. Development of novel glucose and pyruvate biosensors at poly(neutral red) modified carbon film electrodes. Application to natural samples. Electroanalysis. 18: 748–756.
  • Ghica, M. E., and C. M. A. Brett. 2008. Glucose oxidase inhibition in poly(neutral red) mediated enzyme biosensors for heavy metal determination. Microchim. Acta. 163: 185–193.
  • Ghica, M. E., R. C. Carvalho, A. Amine, and C. M. A. Brett. 2013. Glucose oxidase enzyme inhibition sensors for heavy metals at carbon film electrodes modified with cobalt and copper hexacyanoferrate. Sens. Actuator B-Chem. 178: 270–278.
  • Gouveia-Caridade, C., D. M. Soares, H.-D. Liess, and C. M. A. Brett. 2008. Electrochemical, morphological and microstructural characterization of carbon film resistor electrodes for application in electrochemical sensors. Appl. Surf. Sci. 254: 6380–6389.
  • Guascito, M. R., C. Malitesta, E. Mazzota, and A. Turco. 2008. Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor. Study of the effect of hydrogen peroxide decomposition. Sens. Actuator B-Chem. 131: 394–402.
  • Kosterin, S. O., Y. I. Prilutsky, P. O. Borisko, and M. S. Miroshnichenko. 2005. Kinetic analysis of the influence of inverse effectors (inhibitors and activators) on enzymatic (transport) activity of proteins. Ukr. Biochem. J. 77: 113–125.
  • Lim, H.-S., J.-S. Lee, H.-T. Chon, and M. Sager. 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J. Geochem. Explor. 96: 223–230.
  • Liu, J.-X., X.-M. Xu, L. Tang, and G.-M. Zeng. 2009. Determination of trace mercury in compost extract by inhibition based glucose oxidase biosensor. Trans. Nonferrous Met. Soc. China. 19: 235–240.
  • Malitesta, C., and M. R. Guascito. 2005. Heavy metal determination by biosensors based on enzyme immobilized by electropolymerization. Biosens. Bioelectron. 20: 1643–1647.
  • Pauliukaite, R., and C. M. A. Brett. 2008. Poly(neutral red): Electrosynthesis, characterization, and application as a redox mediator. Electroanalysis. 20: 1275–1285.
  • Sbartai, A., P. Namour, A. Errachid, J. Krejci, R. Sejnohova, L. Renaud, M. L. Hamlaoui,. 2012. Electrochemical boron-doped diamond film microcells micromachined with femtosecond laser: Application to the determination of water framework directive metals. Anal. Chem. 84: 4805–4811.
  • Shan, D., C. Mousty, and S. Cosnier. 2004. Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. Anal. Chem. 76: 178–183.
  • Tekaya, N., O. Saiapina, H. B. Ouada, F. Lagarde, H. B. Ouada, and N. Jaffrezic-Renault. 2013. Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis. Bioelectrochemistry. 90: 24–29.
  • Wang, S., L. Lu, M. Yang, Y. Lei, G. Shen, and R. Yu. 2009. A novel cobalt hexacyanoferrate nanocomposite on CNT scaffold by seed medium and application for biosensor. Anal. Chim. Acta. 651: 220–226.
  • Yang, X., Z. Shen, B. Zhang, J. Yang, W.-X. Hong, Z. Zhuang, and J. Liu. 2013. Silica nanoparticles capture atmospheric lead: Implications in the treatment of environmental heavy metal pollution. Chemosphere. 90: 653–656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.