208
Views
17
CrossRef citations to date
0
Altmetric
Biosensors

Determination of Rutin by a Graphene-Modified Glassy Carbon Electrode

, , , , &
Pages 894-906 | Received 21 Apr 2014, Accepted 06 Sep 2014, Published online: 03 Nov 2014

REFERENCES

  • Afanas’eva, I. B., E. A. Ostrakhovitch, E. V. Mikhal’chik, G. A. Ibragimova, and L. G. Korkina. 2001. Enhancement of antioxidant and anti-inflammatory activities of bioflavonoid rutin by complexation with transition metals. J. Biochem. Pharmacol. 61: 677–684.
  • Carvalho, J. M., K. C. Leandro, A. R. da Silva, and R. Q. Aucélio. 2013. Selective determination of rutin by fluorescence attenuation of the CdS-2-mercaptopropionic acid nanocrystal probe. Anal. Lett. 46: 207–224.
  • Chen, L., Y. Tang, K. Wang, C. Liu, and S. Luo. 2011. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 13: 133–137.
  • Du, D., S. Guo, L. Tang, Y. Ning, Q. Yao, and G. J. Zhang. 2013. Graphene-modified electrode for DNA detection via PNA–DNA hybridization. Sensor. Actuat. B-Chem. 186: 563–570.
  • Du, H., J. Ye, J. Zhang, X. Huang, and C. Yu. 2010. Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin. Electroanal. 22: 2399–2406.
  • Gan, T., and S. Hu. 2011. Electrochemical sensors based on graphene materials. Microchim. Acta. 175: 1–19.
  • Gao, F., X. Qi, X. Cai, Q. Wang, F. Gao, and W. Sun. 2012. Electrochemically reduced graphene modified carbon ionic liquid electrode for the sensitive sensing of rutin. Thin Solid Films. 520: 5064–5069.
  • Hassan, H., B. Barsoum, and I. Habib. 1999. Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman Filter approach. J. Pharm. Biomed. Anal. 20: 315–320.
  • He, J. L., Y. Yang, X. Yang, Y. L. Liu, Z. H. Liu, G. L. Shen, and R. Q. Yu. 2006. β-Cyclodextrin incorporated carbon nanotube-modified electrode as an electrochemical sensor for rutin. Sensor. Actuat. B-Chem. 114: 94–100.
  • Hu, S., H. Zhu, S. Liu, J. Xiang, W. Sun, and L. Zhang. 2012. Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite. Microchim. Acta. 178: 211–219.
  • Huang, K. J., Y. J. Liu, H. B. Wang, T. Gan, Y. M. Liu, and L. L. Wang. 2014. Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sensor. Actuat. B-Chem. 191: 828–836.
  • Huang, K. J., D. J. Niu, J. Y. Sun, C. H. Han, Z. W. Wu, Y. L. Li, and X. Q. Xiong. 2011. Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloid. Surface. B. 82: 543–549.
  • Hummers, Jr., W. S., and R. E. Offeman. 1958. Preparation of graphitic oxide. J. Am. Chem. Soc. 80: 1339–1339.
  • Ishii, K., T. Furuta, and Y. Kasuya. 2001. Determination of rutin in human plasma by high-performance liquid chromatography utilizing solid-phase extraction and ultraviolet detection. J. Chromatogr. B 759: 161–168.
  • Kang, X., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin. 2010. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta. 81: 754–759.
  • Kovtyukhova, N. I., P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy. 1999. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 11: 771–778.
  • Kreft, S., M. Knapp, and I. Kreft. 1999. Extraction of rutin from buckwheat (Fagopyrum esculentum Moench) seeds and determination by capillary electrophoresis. J. Agric. Food Chem. 47: 4649–4652.
  • Liu, K., J. Wei, and C. Wang. 2011. Sensitive detection of rutin based on β-cyclodextrin@chemically reduced graphene/Nafion composite film. Electrochim. Acta. 56: 5189–5194.
  • Liu, M., J. Deng, Q. Chen, Y. Huang, L. Wang, Y. Zhao, Y. Zhang, H. Li, and S. Yao. 2013. Sensitive detection of rutin with novel ferrocene benzyne derivative modified electrodes. Biosens. Bioelectron. 41: 275–281.
  • Ma, X., M. Chao, and Z. Wang. 2012. Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode. Anal. Methods. 4: 1687.
  • Macikova, P., V. Halouzka, J. Hrbac, P. Bartak, and J. Skopalova. 2012. Electrochemical behavior and determination of rutin on modified carbon paste electrodes. Sci. World J. 2012: 9.
  • Manach, C., C. Morand, C. Demigné, O. Texier, F. Régérat, and C. Rémésy. 1997. Bioavailability of rutin and quercetin in rats. Febs Lett. 409: 12–16.
  • Middleton, E., C. Kandaswami, and T. C. Theoharides. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 52: 673–751.
  • Park, S., J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff. 2011. Hydrazine-reduction of graphite- and graphene oxide. Carbon. 49: 3019–3023.
  • Park, S., and R. S. Ruoff. 2009. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4: 217–224.
  • Shan, C., H. Yang, J. Song, D. Han, A. Ivaska, and L. Niu. 2009. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 81: 2378–2382.
  • Shao, Y., J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin. 2010. Graphene based electrochemical sensors and biosensors: A review. Electroanal. 22: 1027–1036.
  • Tyszczuk, K. 2009. Sensitive voltammetric determination of rutin at an in situ plated lead film electrode. J. Pharm. Biomed. Anal. 49: 558–561.
  • Wu, H., M. Chen, Y. Fan, F. Elsebaei, and Y. Zhu. 2012. Determination of rutin and quercetin in Chinese herbal medicine by ionic liquid-based pressurized liquid extraction-liquid chromatography-chemiluminescence detection. Talanta. 88: 222–229.
  • Wurglics, M., and M. Schubert-Zsilavecz. 2006. Hypericum perforatum: A ‘modern’ herbal antidepressant. Clin. Pharmacokinet. 45: 449–468.
  • Xi, X., and L. Ming. 2012. A voltammetric sensor based on electrochemically reduced graphene modified electrode for sensitive determination of midecamycin. Anal. Methods. 4: 3013–3018.
  • Yin, H., Y. Zhou, L. Cui, T. Liu, P. Ju, L. Zhu, and S. Ai. 2011. Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amido amine) dendrimer. Microchim. Acta. 173: 337–345.
  • Yu, S. H., and G. C. Zhao. 2012. Preparation of platinum nanoparticles-graphene modified electrode and selective determination of rutin. Inter. J. Electrochem. 2012: 1–6.
  • Zeng, B., S. Wei, F. Xiao, and F. Zhao. 2006. Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sensor. Actuat. B-Chem. 115: 240–246.
  • Zhang, Y., and W. Jiang. 2012. Decorating graphene sheets with gold nanoparticles for the detection of sequence-specific DNA. Electrochim. Acta. 71: 239–245.
  • Zhang, Y., and J. Zheng. 2008. Sensitive voltammetric determination of rutin at an ionic liquid modified carbon paste electrode. Talanta. 77: 325–330.
  • Zhou, J., K. Zhang, J. Liu, G. Song, and B. Ye. 2012. A supersensitive sensor for rutin detection based on multi-walled carbon nanotubes and gold nanoparticles modified carbon paste electrodes. Anal. Methods. 4: 1350.
  • Zhou, M., Y. Zhai, and S. Dong. 2009. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. J. Anal. Chem. 81: 5603–5613.
  • Zhu, Y., S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff. 2010. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22: 3906–3924.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.