349
Views
16
CrossRef citations to date
0
Altmetric
Biosensors

Sensitive Hydrazine Electrochemical Biosensor Based on a Porous Chitosan–Carbon Nanofiber Nanocomposite Modified Electrode

, , , &
Pages 1551-1569 | Received 28 Jul 2014, Accepted 18 Nov 2014, Published online: 15 Apr 2015

REFERENCES

  • Bao, X., Z. Zhu, N.-Q. Li, and J. Chen. 2001. Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin. Talanta 54: 591–96. doi:10.1016/S0039–9140(00)00667–6
  • Benvidi, A., P. Kakoolaki, H. R. Zare, and R. Vafazadeh. 2011. Electrocatalytic oxidation of hydrazine at a Co(II) complex multi-wall carbon nanotube modified carbon paste electrode. Electrochimica Acta 56: 2045–50. doi:10.1016/j.electacta.2010.11.083
  • Cataldo, F., and L. Gentilini. 2005. On the action of ozone on whole bovine blood. Polymer Degradation and Stability 89: 527–33. doi:10.1016/j.polymdegradstab.2005.01.035
  • Chen, K.-J., C.-F. Lee, J. Rick, S.-H. Wang, C.-C. Liu, and B.-J. Hwang. 2012. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosensors and Bioelectronics 33: 75–81. doi:10.1016/j.bios.2011.12.020
  • Conceição, C. D. C., R. C. Faria, O. Fatibello-Filho, and A. A. Tanaka. 2008. Electrocatalytic oxidation and voltammetric determination of hydrazine in industrial boiler feed water using a cobalt phthalocyanine-modified electrode. Analytical Letters 41: 1010–21. doi:10.1080/00032710801978525
  • Ensafi, A. A., and M. A. Chamjangali. 2004. Flow injection spectrophotometric determination of trace amounts of hydrazine by the inhibition of the pyrogallol red-iodate reaction. Journal of Analytical Chemistry 59: 129–33. doi:10.1023/B:JANC.0000014738.38853.c6
  • Fang, B., Y. H. Feng, M. Liu, G. F. Wang, X. J. Zhang, and M. F. Wang. 2011. Electrocatalytic oxidation of hydrazine at a glassy carbon electrode modified with nickel ferrite and multi-walled carbon nanotubes. Microchimica Acta 175: 145–150. doi:10.1007/s00604–011-0662–8
  • Fang, B., C. H. Zhang, W. Zhang, and G. F. Wang. 2009. A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochimica Acta 55: 178–82. doi:10.1016/j.electacta.2009.08.036
  • Gao, Q., Y. Guo, J. Liu, X. Yuan, H. Qi, and C. Zhang. 2011. A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer. Bioelectrochemistry 81: 109–13. doi:10.1016/j.bioelechem.2011.04.003
  • Georgea, M., K. S. Nagaraja, and N. Balasubramanian. 2008. Spectrophotometric determination of hydrazine. Talanta 75: 27–31. doi:10.1016/j.talanta.2007.09.002
  • Gilbert, R., R. Rioux, and S. E. Saheb. 1984. Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Analytical Chemistry 56: 106–09. doi:10.1021/ac00265a029
  • Hao, C., L. Ding, X. Zhang, and H. Ju. 2007. Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Analytical Chemistry 79: 4442–47. doi:10.1021/ac062344z
  • He, Y., Q. Sheng, J. Zheng, M. Wang, and B. Liu. 2011. Magnetite–graphene for the direct electrochemistry of hemoglobin and its biosensing application. Electrochimica Acta 56: 2471–76. doi:10.1016/j.electacta.2010.11.020
  • Ji, X., C. E. Banks, A. F. Holloway, K. Jurkschat, C. A. Thorogood, G. G. Wildgoose, and R. G. Compton. 2006. Palladium sub-nanoparticle decorated ‘bamboo’ multi-walled carbon nanotubes exhibit electrochemical metastability: voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 18: 2481–85. doi:10.1002/elan.200603681
  • Kamyabi, M. A., O. Narimani, and H. H. Monfared. 2010. Electrocatalytic oxidation of hydrazine using glassy carbon electrode modified with carbon nanotube and terpyridine manganese(II) complex. Journal of Electroanalytical Chemistry 644: 67–73. doi:10.1016/j.jelechem.2010.03.037
  • Kumar, A. S., P. Gayathri, P. Barathi, and R. Vijayaraghavan. 2012. Improved electric wiring of hemoglobin with impure-multiwalled carbon nanotube/nafion modified glassy carbon electrode and its highly selective hydrogen peroxide biosensing. Journal of Physical Chemistry C 116: 23692–703. doi:10.1021/jp3064933
  • Li, M., H. Ji, Y. Wang, L. Liu, and F. Gao. 2012. MgFe-layered double hydroxide modified electrodes for direct electron transfer of heme proteins. Biosensors and Bioelectronics 38: 239–44. doi:10.1016/j.bios.2012.05.035
  • Li, R., Y. Nagai, and M. Nagai. 2000. Changes of tyrosine and tryptophan residues in human hemoglobin by oxygen binding: near- and far-UV circular dichroism of isolated chains and recombined hemoglobin. Journal of Inorganic Biochemistry 82: 93–101. doi:10.1016/S0162–0134(00)00151–3
  • Lu, X., Y. Xiao, Z. Lei, J. Chen, H. Zhang, Y. Ni, and Q. Zhang. 2009. A promising electrochemical biosensing platform based on graphitized ordered mesoporous carbon. Journal of Materials Chemistry 19: 4707–14. doi:10.1039/b903179k
  • Łuczak, T. 2008. Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution. Electrochimica Acta 53: 5725–31. doi:10.1016/j.electacta.2008.03.052
  • Luo, R., W. Zhang, W. Cheng, D. Zhao, Y. H. Li, X. J. Lin, F. Dong, and S. J. Ding. 2013. A novel electrochemical immunosensor for detection of angiotensinII at a glass carbon electrode modified by carbon nanotubes/chitosan film. International Journal of Electrochemical Science 8: 3186–96.
  • Lyutov, V., and V. Tsakova. 2011. Palladium-modified polysulfonic acid-doped polyaniline layers for hydrazine oxidation in neutral solutions. Journal of Electroanalytical Chemistry 661: 186–91. doi:10.1016/j.jelechem.2011.07.043
  • Majidi, M. R., A. Jouyban, and K. Asadpour-Zeynali. 2007. Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode. Electrochimica Acta 52: 6248–53. doi:10.1016/j.electacta.2007.04.019
  • Maleki, N., A. Safavi, E. Farjami, and F. Tajabadi. 2008. Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Analytica Chimica Acta 611: 151–55. doi:10.1016/j.aca.2008.01.075
  • Muzzarelli, R. A. A., and C. Muzzarelli. 2005. Chitosan chemistry: relevance to the biomedical sciences. In Polysaccharides 1: structure, characterization and use, ed. T. Heinze 151–209. Berlin: Springer Berlin Heidelburg.
  • Ni, Y., P. Wang, H. Song, X. Lin, and S. Kokot. 2014. Electrochemical detection of benzo(a)pyrene and related DNA damage using DNA/hemin/nafion–graphene biosensor. Analytica Chimica Acta 821: 34–40. doi:10.1016/j.aca.2014.03.006
  • Oh, J.-A., J.-H. Park, and H.-S. Shin. 2013. Sensitive determination of hydrazine in water by gas chromatography–mass spectrometry after derivatization with ortho-phthalaldehyde. Analytica Chimica Acta 769: 79–83. doi:10.1016/j.aca.2013.01.036
  • Ozoemena, K. I., and T. Nyokong. 2005. Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67: 162–68. doi:10.1016/j.talanta.2005.02.030
  • Pillai, C. K. S., W. Paul, and C. P. Sharma. 2009. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Progress in Polymer Science 34: 641–78. doi:10.1016/j.progpolymsci.2009.04.001
  • Rodriguez, N. M., M.-S. Kim, and R. T. K. Baker. 1994. Carbon nanofibers: a unique catalyst support medium. The Journal of Physical Chemistry 98: 13108–11. doi:10.1021/j100101a003
  • Safavi, A., and M. A. Karimi. 2002. Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 58: 785–92. doi:10.1016/S0039–9140(02)00362–4
  • Sheng, C., Y. Zhang, L. Wang, and N. Jia. 2012. Immobilization and bioelectrochemistry of hemoglobin based on carrageenan and room temperature ionic liquid composite film. Chinese Journal of Chemistry 30: 1565–70. doi:10.1002/cjoc.201200113
  • Tan, C., X. Xu, F. Wang, Z. Li, J. Liu, and J. Ji. 2013. Carbon black supported ultra-high loading silver nanoparticle catalyst for electro-oxidation and determination of hydrazine. Science China Chemistry 56: 911–16. doi:10.1007/s11426–012-4831–3
  • Vamvakaki, V., K. Tsagaraki, and N. Chaniotakis. 2006. Carbon nanofiber-based glucose biosensor. Analytical Chemistry 78: 5538–42. doi:10.1021/ac060551 t
  • Wang, H., X. Bo, J. Ju, and L. Guo. 2012. Preparation of highly dispersed gold nanoparticles/mesoporous carbon nanofiber composites and their application toward detection of hydrazine. Catalysis Science & Technology 2: 2327–31. doi:10.1039/c2cy20300f
  • Wang, J., M. Musameh, and Y. Lin. 2003. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. Journal of the American Chemical Society 125: 2408–09. doi:10.1021/ja028951v
  • Wang, Z., J. Xu, Y. Yao, L. Zhang, Y. Wen, H. Song, and D. Zhu. 2014. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sensors and Actuators B: Chemical 196: 357–69. doi:10.1016/j.snb.2014.02.035
  • Wu, L., X. Zhang, and H. Ju. 2007. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential. Analytical Chemistry 79: 453–58. doi:10.1021/ac061282+
  • Wu, M., Q. He, Q. Shao, Y. Zuo, F. Wang, and H. Ni. 2011. Preparation and characterization of monodispersed microfloccules of TiO2 nanoparticles with immobilized multienzymes. ACS Applied Materials & Interfaces 3: 3300–07. doi:10.1021/am200792a
  • Wu, M., Ning, Y., Ni, H., Zheng, Y., Qi, Q., and Sun, Y. Fabrication and application of biomaterials modified electrode for the catalytic oxidation and detection of hydrazine, Patent ZL2013103771783, Application date, July 31, 2013.
  • Wu, S.-H., F.-H. Nie, Q.-Z. Chen, and J.-J. Sun. 2010. Electrocatalytic oxidation and nanomolar detection of hydrazine by luteolin electrodeposited at a multi-walled carbon nanotube and ionic liquid composite modified screen printed carbon electrode. Analytical Methods 2: 1729–36. doi:10.1039/c0ay00450b
  • Yang, G.-W., G.-Y. Gao, C. Wang, C.-L. Xu, and H.-L. Li. 2008. Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 46: 747–52. doi:10.1016/j.carbon.2008.01.026
  • Zare, H. R., and A. Nasirizadeh. 2006. Electrocatalytic characteristics of hydrazine and hydroxylamine oxidation at coumestan modified carbon paste electrode. Electroanalysis 18: 507–12. doi:10.1002/elan.200503408
  • Zhang, H., J. Huang, H. Hou, and T. You. 2009. Electrochemical detection of hydrazine based on electrospun palladium nanoparticle/carbon nanofibers. Electroanalysis 21: 1869–74. doi:10.1002/elan.200904630
  • Zhang, M., and W. Gorski. 2005. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. Journal of the American Chemical Society 127: 2058–59. doi:10.1021/ja044764g
  • Zeng, Y., W. Li, H. H. Zhang, X. Wu, W. Sun, Z. H. Zhu, and Y. Yu. 2014. Application of flower-like SnS2 nanoparticles for direct electrochemistry of hemoglobin and its electrocatalysis. Analytical Methods 6: 404–09. doi:10.1039/c3ay41644e
  • Zheng, L., and J.-F. Song. 2009. Ni(II)-baicalein complex modified multi-wall carbon nanotube paste electrode toward electrocatalytic oxidation of hydrazine. Talanta 79: 319–26. doi:10.1016/j.talanta.2009.03.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.